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Kinetic damping in linear gyrokinetic (GK) Vlasov simulations is found to exhibit a bifurcation at the col-
lisionality βc = β

�
c , above which, i.e. βc > β

�
c , the damping is represented by a Landau eigenmode in velocity

space, while below which, i.e. βc < β
�
c , by the phase mixing of a finite number of marginally stable, discretized

Case–van Kampen eigenmodes. The latter causes a recurrence that restricts the damping and then the energy
transfer from wave to particles within a finite recurrence time. In order to address whether the stabilization ef-
fect due to such stable damped modes on unstable modes via mode coupling can be evaluated in long timescale
GK simulations, we introduced a triad model consisting of stable and unstable modes incorporated with a ter-
tiary vortex flow. We identified β�c numerically and found that the stabilization effect works properly beyond the
recurrence time even in the phase mixing regime across βc = β

�
c .
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In plasma turbulence, stable modes play an important
role in absorbing fluctuating free energy as a sink, which
leads to saturation. Such a phenomenon commonly exists
in various linear and nonlinear mode coupling processes.
For example, nonlinear energy cascades occur through a
three-wave coupling in drift wave turbulence. On the other
hand, the unstable ion temperature gradient (ITG) mode
is suppressed by the linear mode coupling produced by an
externally imposed static vortex flow or magnetic island,
forming a global ITG structure with the same growth rates
and frequencies [1]. Mode coupling mediates the under-
lying suppression mechanisms of unstable modes by the
dissipation effect of stable modes. Such stable modes orig-
inate from various damping processes. They are charac-
terized by collisional (viscous) damping in a fluid model
while they result from Landau damping and the so-called
finite Larmor radius (FLR) effects in the kinetic system.
Hence, Landau damping is crucial in energy transfer pro-
cesses because it predominantly affects the fluctuation dy-
namics in both linear and nonlinear regimes.

However, in collisionless gyrokinetic (GK) simula-
tions, Landau damping exhibits different time evolutions
depending on the choice of the initial distribution in ve-
locity space due to the appearance of marginally stable
Case–van Kampen (CvK) eigenmodes in the discretized
velocity space. Namely, we observe a marginal behav-
ior with neither growth nor damping for a random noise
distribution. On the other hand, a damping accompanied
by the recurrence phenomenon occurs for the Maxwellian
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distribution [2], where damping is terminated within a fi-
nite time determined by the mesh size v. Consequently,
the damping rate averaged over a timescale longer than the
recurrence time becomes zero. Such damping with recur-
rence has been found to result not from Landau damping
as a discrete eigenmode but from the phase mixing of a
finite number of CvK eigenmodes. This is in contrast to
the unstable ITG mode, which is always found to be an
eigenmode of the GK Vlasov–Poisson (VP) system. These
issues have been intensively studied among researchers in
the field [2–9].

To determine Landau damping through an eigenmode
of the VP system, here referred to as Landau eigenmode, a
finite collisionality βc larger than the critical value β�c , i.e.
βc > β

�
c , is necessary which leads to the damping for the

CvK eigenmodes below the growth rate that is predicted
by the Landau theory so that a Landau eigenmode appears.
In other words, a bifurcation of the solution for the sta-
ble mode in a discretized VP system occurs at βc = β

�
c .

Once the Landau eigenmode is revealed, the recurrence
phenomenon disappears and the damping is found to be
independent of the initial perturbation, e.g., random noise
and Maxwellian distribution. In general, a higher (lower)
collisionality is required for a lower (higher) resolution to
damp the CvK eigenmodes [3].

Now, the question arises of whether the stabilization
effect of unstable modes through stable modes is correctly
evaluated beyond the recurrence time, in collisionless non-
linear GK simulations or in a linearly coupled Vlasov–
Poisson system, where the linear coupling between un-
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stable and stable modes arises through an external vor-
tex flow [1]. To address this problem, we investigated the
characteristics of stable ITG modes in sheared slab geom-
etry by incorporating two approaches: GK Vlasov simu-
lations as an initial value problem (IVP) and eigenvalue
analysis, both of which are equally discretized in velocity
space. The imposed vortex flow, which induces the lin-
ear coupling for different poloidal modes, is considered
to originate from a tearing mode and is given by φVF =

ε tanh(x) exp[−(x/ε)2] sin(kVFy), where kVF = 2π/Ly, Ly =
64 and ε represent the wavenumber and the amplitude, re-
spectively. The linearized GK equations with conventional
normalization [10] for the drift waves is given by

∂ f1,�k⊥
∂t
= S�k⊥ +L�k⊥ +DLB,�k⊥ +

[
φVF, f1,�k⊥

]
, (1)

where f1 is the perturbed distribution function from the
Maxwellian background and S�k⊥ is the source term that
depends on ηi = Ln/LT , i.e., the ratio of temperature gra-
dient scale length to density gradient scale length. Fur-
thermore, L�k⊥ consists of the parallel convection and the
linear Landau damping term, and DLB,�k⊥ is the Lenard–
Bernstein collisional operator. The last term is the Poisson
bracket which induces linear mode coupling through the
vortex flow.

Figure 1 shows the results of directly solving Eq. (1)
as an IVP. Note that the long timescale average exceed-
ing the recurrence time leads to an almost zero damping
rate for the stable modes independent on the initial condi-
tion. Here we illustrate two cases: without (ε = 0) and
with (ε = 0.4) coupling by the vortex flow. Each case is
considered both without (βc = 0) and with (βc = 2 × 10−3)
collision, where βc > β

�
c ∼ 10−3 so that we resolve the

Fig. 1 Growth rates of the electrostatic potential from the GK
Vlasov simulation as an IVP in a coupled system (ε =
0.4) mediated by a vortex flow and in an uncoupled sys-
tem (ε = 0). The dashed curve corresponds to the theo-
retical solution of the uncoupled system (ŝ = 0.6, ηi = 6).

Landau eigenmodes for ky < 1. The result of solving the
theoretical dispersion relation (without coupling and colli-
sions) is also shown by the dashed line. In the absence of
coupling, the unstable ITG modes show almost the same
results without sensitively depending on βc, indicating that
the selected collisionality is sufficiently small while stable
modes show a difference depending on βc. Namely, stable
modes show marginal behavior for βc = 0, whereas they
show damping behavior with nearly the same growth rate
as predicted by Landau theory for βc = 2 × 10−3. As dis-
cussed above, this is expected, because the former results
from the phase mixing of the associated CvK eigenmodes,
while the latter results from the appearance of the Landau
eigenmode in case the CvK eigenmodes are sufficiently
damped. On the other hand, for the case with a vortex flow,
i.e., ε = 0.4, IVP simulations show that the vortex flow sta-
bilizes the ITG mode by coupling the unstable and stable
components, leading to the formation of a global structure,
where all poloidal modes have the same growth rates as
shown in Fig. 1. These results are consistent with those
obtained from gyrofluid simulations [1]. However, it is in-
teresting to note that the cases with and without collisions
reveal similar results regardless of whether Landau damp-
ing in the absence of coupling (which is considered to be
the origin of the stabilization in the presence of coupling),
arises from phase mixing (βc < β

�
c ) or from a Landau

eigenmode (βc ≥ β�c ), as discussed in Fig. 1. Therefore, it
is worthwhile to investigate whether the stable modes play
a role as an energy transfer channel for unstable modes in
the collisionless limit.

To answer this question, we propose a reduced model
that only involves coupling of three modes of the electro-
static potential, i.e., an unstable mode, a stable mode, and
an externally imposed tertiary vortex flow. In this min-
imal model, magnetic shear is ignored and the FLR ef-
fect up to the first order is considered. The equilibrium
magnetic field is given by �B0 = B0 (ẑ + θŷ) with θ � 1.
Note that for a fixed kx, we can calculate the dispersion
relation, where the velocity integral is expressed using the
Fred–Conte plasma dispersion function [11]. Here, we set
kx = 0, which gives the largest growth rate. The Taylor ex-
pansion around x = 0 has been applied to the vortex flow
to more clearly represent the leading tearing parity term
which results in φVF = − 1

2 ixε
(
exp[ikVFy] − exp[−ikVFy]

)
.

The inclusion of the vortex flow leads to a coupling of
neighboring modes as k′y ± kVF. Here, we only consider
a coupling pair given by k′y = 1.3 and k′′y = k′y + kVF = 1.8
and neglect the other as the dynamic is qualitatively equal.
The resulting equations for the unstable mode k′y and the
stable mode k′′y are given by

∂ f1,k′y
∂t
= S k′y + Lk′y + DLB,k′y + Ck′′y , (2a)

∂ f1,k′′y
∂t
= S k′′y + Lk′′y + DLB,k′′y + Ck′y , (2b)

where
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Fig. 2 Eigenvalue spectra (◦) of the coupled system with ε = 0.1
for the collisionless case (a) with βc = 0, and collisional
case (b) with βc = 5 × 10−4 are shown together with the
Landau solution of the uncoupled case (�).

Ck′y = +
iε
2

k′y f1,k′y and Ck′′y = −
iε
2

k′′y f1,k′′y , (3)

are the cross-coupling terms from the Poisson bracket in
Eq. (1).

On solving the discretized Eq. (2a) and (2b), we re-
formulate them as an eigenvalue problem by assuming a
harmonic time dependence for f1,�k⊥ as f̃1,�k⊥e−iωt. Thus, we
get

−iω f̃1,�k⊥ = Gky · f̃1,�k⊥ , (4)

where Gky is the so-called linear GK operator. The explicit

form using f̃1,ky =
(

f1,k′y , f1,k′′y
)

is then given by

−iω

(
f1,k′y
f1,k′′y

)
=

( Gk′y Ck′′y
Ck′y Gk′′y

)
︸�����������︷︷�����������︸

Gk′y,k′′y

(
f1,k′y
f1,k′′y

)
, (5)

where the off-diagonal elements, i.e. Ck′y and Ck′′y , lead to
the mode coupling. Note that the eigenvectors of the oper-
ator Gk′y,k′′y are twice the size of those for the operator Gky

in Eq. (4). Here an equidistant discretization in velocity
space is used with Lv = ±4 and a grid number of Nv = 128.
Physical parameters are set to ηi = 6, θ = 0.3, ε = 0.1.
The eigenvalue problem is solved by using the Krylov–
Schur iteration procedure, for example, as provided by
SLEPc [12].

Figure 2 shows the eigenvalues (circles) in (a) the
collisionless and (b) collisional cases (βc = 10−3), re-
spectively, including the analytical solution from the dis-
persion relation in the uncoupled system (squares). In
Fig. 2(a), an unstable global mode with its complex con-
jugate (time reversed) solution is observed; others cor-
respond to the marginally stable CvK eigenmodes. By
comparing with the analytical solution of the uncoupled
case, we find that the unstable global mode is stabilized
through coupling even though no stable eigenmode exists.
In presence of collision larger than the critical value, i.e.,
βc > β

�
c ∼ 5 × 10−4, the collision strongly damps the CvK

eigenmodes, resulting in the stable global mode, shown by
the arrow in Fig. 2(b), appearing as an eigenmode in ve-
locity space. We find that the growth rate of the unstable

Fig. 3 Growth rates of the unstable(◦)/stable(�) global eigen-
modes versus the coupling parameter ε for βc = 0 (a) and
βc = 5 × 10−4 (b) in the coupled system.

global mode, which is considered to be stabilized by the
eigenmode, is the same as that in Fig. 2(a), i.e., in the col-
lisionless case. In contrast to the case without coupling,
the damping rate of the Landau damped eigenmode is re-
duced, i.e., destabilization occurs. The result is consistent
with the concept that the energy of the unstable mode is
partially transferred to the stable mode which maintains the
energy conservation. From these results, we conclude that
mode coupling between unstable and stable modes through
a tertiary mode and the resultant energy transfer can be
properly reproduced so that the stable mode, which is rep-
resented by the phase mixing of the CvK eigenmodes, per-
sist.

To further test this revealing insight, a parametric scan
over the coupling parameter ε is performed as shown in
Fig. 3. In the collisional case, the growth rate of the sta-
ble global mode increases with increasing ε, whereas the
unstable global mode is stabilized with almost the same
growth rate, similar to that in the collisionless case. A sta-
ble global mode is not represented as an eigenmode in ve-
locity space in the absence of collision, hence their growth
rates are not shown in Fig. 3(a). These results show that
the linear stabilization mechanism due to mode coupling is
independent of collision and thus the existence of the Lan-
dau damped mode as a true eigenmode of the VP system is
not essential.

In conclusion, stable modes play an important role
in suppressing instability through mode coupling in GK
Vlasov simulations. This stabilization effect is indepen-
dent of whether the energy transfer results from phase mix-
ing of the CvK eigenmodes or a true Landau eigenmode.
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