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Nonlocal Ponderomotive Force in a Super Gaussian Laser Beam
and the Conditions for Long Time Scale Interaction
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We have applied the theory of the nonlocal ponderomotive force which we derived recently using the non-
canonical Lie perturbation approach to investigate a long time scale particle motion in a super Gaussian laser
beam. In such a flat-top beam profile, the local field gradient is diminished near the axis, so that the conventional
ponderomotive formula is hardly applied. Numerical analyses of the interaction time and its dependence on the
initial position and momentum of particles show that the nonlocal effect of the ponderomotive force, which is
associated with higher order spatial derivatives, regulates the dynamics predominantly and sensitively.
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In recent years, the delicate control of laser field pat-
terns in plasmas is anticipated. For instance, the super
Gaussian beam, in which the ponderomotive force is sig-
nificantly weakened near the axis owing to the flat-top
transverse beam profile, is considered preferable in main-
taining long interaction between laser and particles and
also in achieving efficient particle acceleration via the laser
piston and/or Coulomb explosion mechanism [1, 2]. In
such a case, the ponderomotive force estimated from the
conventional formula proportional to the local field gradi-
ent is diminished [3–5]. Then, a residual higher order force
associated with the nonlocal field profile becomes impor-
tant. As a theory of the ponderomotive force applicable
to such a regime, we have recently derived a new formula
for the relativistic ponderomotive force in a transversely
localized laser field that includes the higher order nonlocal
effect [6,7]. The new formula can be utilized to analyze the
particle motion in such a flat-top laser beam.

In Refs. [6] and [7], the oscillation center equation
of motion describing the higher order nonlocal pondero-
motive force is derived on the basis of the noncanonical
phase space coordinate Zμ = (η; X,Y,Z, Px, Py, pη) where
η = ωt − kzz is the phase, ω the angular frequency, kz

the wave number, X and P the oscillation center position
and mechanical momentum of the oscillation center re-
spectively, pη = pz − γmc is a constant of motion in the
uniform laser field, pz the mechanical momentum of the
particle and γ the relativistic factor. The equation is de-
rived on the basis of the noncanonical Hamiltonian me-
chanics incorporated with Lie transformation [8]. Here,
the laser field is assumed to be transversely nonuniform
and linearly polarized and is given by the normalized vec-
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tor potential a = |q|A/mc2 as a = ax (x) sin η êx where q
and m are the charge and rest mass of the particle, respec-
tively, and c the speed of light. In the oscillation center
equation, the nonlocal effects are taken into account up to
the third order of the expansion parameter ε ∼ l/L where
L−1 (X) ≡ ∂x ln ax (x) |x=X = a−1

x ∂Xax is the scale length
of the gradient of the laser field amplitude, l ≡ ax (X) /kzζ0
the particle excursion length and ζ0 a constant by which the
initial value of pη is defined as pη0 ≡ −mcζ0. The equation
is derived on the basis of the expansion of the laser field
amplitude around x = X:

ax(x) = ax (X)

[
1 + ε

x̃
L
+ ε2

x̃2

2!R
+ ε3

x̃3

3!T
+ · · ·

]
,

(1)

where x̃ ≡ X − x. Here, R−1 (X) ≡ a−1
x ∂

2
Xax and T−1 (X) ≡

a−1
x ∂

3
Xax are the curvature of the field amplitude and its

derivative, respectively, and l2/R ∼ ε2 and l3/T ∼ ε3 are
assumed. By using the Lie transformation Zμ �→ Z′μ and
proper gauge functions, we can remove small oscillations
up to O

(
ε3

)
from the X direction so that the secular equa-

tions of motion describing the ponderomotive force up to
O

(
ε3

)
are obtained as

dX′

dη
=

P′x
mcζ0kz

(
1 + ε2

3
2

l2

L2

)
, (2)

dP′x
dη
= −mcax

2

[
ε

l
L
+
ε3

8

(
7
2

l
L

l2

R
+

l3

T
+

1
2

l3

L3

)]
,

(3)

which are the central results in Ref. [6] (Eqs. (10) and
(11)). Equation (3) involves terms represented by second
and third spatial derivatives; therefore, the force depends
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Fig. 1 Transverse laser field profiles for j = 2, i.e., the Gaussian
case exp(−x2/w2) (dotted line), and j = 4, i.e., the super
Gaussian case exp(−x4/w4) (solid line).

Fig. 2 Numerical simulation for a particle interacting with the
laser beam having the envelope a0 exp

(
−x4/w4

)
where

a0 = 4 and the wavelength λ = 1 µm. The oscillation
center trajectories obtained by the ponderomotive formu-
lae up to the first (red line) and third (blue line) orders are
shown, together with the particle trajectory calculated by
the exact equation of motion (black line) for (a) w = 6 µm
and (b) 3 µm.

not only on the local field gradient, but also on the curva-
ture and its variation.

Here, we investigate the higher order nonlocal effect
originating from the super Gaussian beam structure on the
oscillation center dynamics based on Eqs. (2) and (3). We
assume the laser field given by ax (x) = a0exp

(
−x j/w j

)
where a0 is the amplitude at the beam center and w the
scale length of the field envelope. For instance, j = 2 cor-
responds to a Gaussian beam and j = 4 a super Gaussian
having a gentle amplitude variation near the axis, as shown
in Fig. 1. In the case of j = 4, the first to third derivatives
vanish at the center, resulting in significant weakening of
the ponderomotive force. Therefore, here we mainly con-
sider j = 4 to maintain the long interaction.

The numerical solutions obtained using Eqs. (2) and
(3) up to the third order ε3 (case (I), blue line) and the
first order ε (case (II), red line) are shown in Fig. 2 for
(a) w = 6 µm and (b) w = 3 µm, together with the so-
lution obtained using the exact equation of motion, i.e.,
dp/dη = q (E + u × B/c)ω/γ (black line). Here, we as-
sume a0 = 4, laser wavelength λ = 1 µm and the ini-
tial condition

(
X′, P′x

)
= (0, 0.001mc). In both Figs. 2 (a)

and (b), the trajectories for case (I) (up to O
(
ε3

)
) show an

almost exact agreement with those of the direct numeri-
cal calculation, whereas the trajectories for case (II) (up to

O (ε)) exhibit a significant difference in the ejection time
(the time that the oscillation center reaches to the laser
beam radius, X′ = w). Using the relation dη/dt = ωζ0/γ,
the ejection times for case (I) and (II) are obtained as
t = 630 and 1750 fs respectively for w = 6 µm, and t = 200
and 870 fs respectively for w = 3 µm. We have also con-
firmed that the Gaussian profile ( j = 2) provides a shorter
interaction time, e.g., 140 fs for w = 6 µm in case (I), and
the relative difference of the ejection time between case
(I) and (II) is less than 1%, suggesting that the first order
force plays a dominant role. In other words, nonlocal ef-
fects increase significantly with increasing values of the
polynomial j.

The physics leading to such a difference is explained
as follows: The conventional first order formula looks only
at a narrow region through the local gradient, which is very
weak in the present super Gaussian case. On the other
hand, the third order formula has a capability to include
the global extent of the profile up to around the beam ra-
dius X′ ∼ w. The third order formula can then capture the
rapid change in the field amplitude near the beam radius
even when the oscillation center is located near the center,
and the formula can represent the nonlocal effect as a resid-
ual ponderomotive force, which enhances the ejection. For
this reason, the first order formula used in case (II) signif-
icantly overestimates the interaction time, as in Figs. 2 (a)
and (b). The dynamics are found to be described analyt-
ically by an exponential function for case (I) whereas by
the Jacobi elliptic function sn for case (II) which will be
discussed separately.

Based on the above results, we further investigate
the transverse initial condition that allows for keeping the
interaction without suffering ejection over a given phase
advance Δη. Here, we impose the condition applied in
Fig. 2 (a), i.e., w = 6 µm, and a0 = 4 and Δη = 300, which
corresponds to a 1 psec time duration. In Fig. 3 (a), the re-
sult is plotted in normalized phase space for initial con-
dition,

(
X′0/λ, P

′
x0/mc

)
. The blue squares and red circles

show the results obtained numerically by using the third
order (case (I)) and first order (case (II)) ponderomotive
formulae, respectively. The hatched area corresponds to
the region allows for the long interaction. Namely, only
the particles with initial conditions in the hatched area can
keep the interaction during 1 psec. The hatched region is
about 16 times larger in case (II) than in case (I), suggest-
ing that the higher order terms are effective in determining
the particle dynamics near the axis. We also investigated
the maximum initial momentum P′x0 for keeping the in-
teraction during Δη = 300 with various beam radii w for
both cases (I) and (II). The numerical result for each case
is shown in Fig. 3 (b) using blue squares and red circles.
Here, the initial position is set as X′ = 0. It is found that
P′x0 decreases exponentially as P′x0 ∼ 1/ exp

(
λ2/w2

)
for

case (I) (blue line), whereas P′x0 exhibits more gentle de-
pendence P′x0 ∼ (w/λ)5/3 for case (II) (red line). These re-
sults suggest that the new particle motion associated with
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Fig. 3 (a) The allowed area for the initial position and momen-
tum in the perpendicular direction to maintain the inter-
action keeping X′ < w = 6 µm during Δη = 300 eval-
uated by the third order (case (I), blue squares) and first
order (case (II), red circles) formulae. (b) The initial mo-
mentum P′x0 that leads to X′ = w at η = 300 for each
w in case (I) (blue squares) and (II) (red circles). The
other parameters are the same as those used in Fig. 2, i.e.,
ax = a0 exp

(
−x4/w4

)
, a0 = 4 and λ = 1 µm.

the third order terms predominantly and sensitively regu-
lates the dynamics.

In summary, we applied the ponderomotive formula
that includes the nonlocal effect up to the third order of
ε to study particle motion in a super Gaussian laser beam,
which successfully prolongs the interaction time compared
with the Gaussian counterpart. In this profile, since the
local field gradient diminishes near the beam center, the
higher order terms represented by the curvature of the field
envelope and its variation dominate the dynamics. A com-
parison with the direct integration of the particle orbit indi-
cates the validity of the formula derived in Ref. [6] with a

sufficient convergence of the expansion series up to O
(
ε3

)
.

We also investigated the initial particle position and mo-
mentum that allow for keeping the interaction for a given
phase advance. The conventional formula is found to over-
estimate the allowed area in phase space, suggesting the
importance of the higher order terms. The result obtained
here could be verified by measuring the amount of X-rays,
which may reflects the number of interacting particles [9].
The new formula is expected to be applicable to chan-
neling problems where the long time scale interaction be-
tween self-focused laser beam and particles influenced by
the ponderomotive force play a key role [10].
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