
Plasma and Fusion Research: Rapid Communications Volume 8, 1201135 (2013)

High-Speed Volume Rendering in CAVEs

Yuki YAMAURA, Youhei MASADA and Akira KAGEYAMA
Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan

(Received 26 July 2013 / Accepted 12 August 2013)

A high-speed rendering method for three-dimensional animated volume rendering in a CAVE visualization
environment is developed. The proposed method accelerates the standard three-dimensional texture-slicing ap-
proach to volume rendering by making use of asynchronous data transfer with the pixel buffer object of graphics
processors. The method enables stereoscopic animation of volume rendering at five frames per second for scalar
data of 5123 grid points in a four-screen CAVE system.

c© 2013 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: data visualization, virtual reality system, volume rendering

DOI: 10.1585/pfr.8.1201135

Volume rendering [1] is one of the most important
visualization methods for scalar field data in the CAVE-
type virtual reality (VR) environment. High frame rate
is critically important in CAVE visualizations to main-
tain quick response to the viewer’s head motion. Among
several algorithms proposed for volume rendering, the
three-dimensional (3D) texture-slicing method is com-
monly adopted because it provides the fastest rendering
speed [2, 3]. In this method, a volume of data of 3D tex-
ture is generated from the target scalar data to be visual-
ized, and 2D semitransparent textures are sliced from the
volume. The slice planes are taken in real time in such a
way that they are always perpendicular to the viewer’s line
of sight. The procedure can be summarized as follows:
(i) conversion of 3D scalar data into 3D texture data with
a transfer function using a prescribed RGBA color code,
(ii) tansfer of the texture data from CPU RAM to GPU
RAM, (iii) generation of slice planes perpendicular to the
viewer’s line of sight, and (iv) mapping of the textures onto
the planes and drawing them in back-to-front order.

Because VR visualizations are actively applied in
plasma-fusion studies [4, 5], it is important that the high
frame rate of VR volume rendering be maintained as the
target data size grows larger than the present typical value
of O(1283)–O(2563).

The purpose of this Rapid Communications is to re-
port a new acceleration technique for the 3D texture slic-
ing method that makes the best use of the current computer
graphics technology.

Technical challenges for high-speed volume rendering
in the CAVE environment can be divided into two cate-
gories; (1) the volume rendering process itself, and (2) the
data transfer from a hard disk drive to GPU graphics mem-
ory.

As a reference, we use the VSVR (Very Simple Vol-
ume Rendering) library [6] to implement the above men-

author’s e-mail: kage@cs.kobe-u.ac.jp

tioned standard volume rendering. A clipping technique is
used in VSVR to accelerate the rendering speed. In this
technique, a slice plane of scalar data is always rectanglu-
lar, in spite of the fact that a straightforward slicing gener-
ates other polygons in general. We have found that volume
rendering by VSVR in a CAVE application program leads
to a reasonably high frame rate when the scalar data is rel-
atively small [≤ O(1283)]. Our purpose is to accelerate this
volume rendering by new techniques described here.

To realize high-speed 3D animation of volume render-
ing in a CAVE, one has to process 3D scalar data at each
time step in a sequential manner. The data conversion to
3D RGBA texture is executed by a function called Tex-
ture3D in VSVR. Texture3D is also used to transfer the
data from CPU to GPU. By analyzing the processing time
of a VSVR application in our CAVE system in detail, we
found that the data transfer step is the hot spot with regard
to time consumption.

We therefore take an alternative approach to the data
transfer by making use of the Pixel Buffer Object (PBO)
provided by OpenGL API. PBO enables high-speed data
transfers to and from a graphic card through direct memory
access (DMA). In this PBO approach, we apply the trans-
fer function to the whole set of 4D scalar data to generate
4D texture data in the preprocessing step. We then transfer
the 3D texture data at each time step for animation. The
PBO approach is the first trick in our new volume render-
ing method. The speed is further accelerated by a type of
parallel processing described in the following.

For the PBO data transfer, we generate a new thread
from each display thread in the CAVE application. This
separation enables us to perform asynchronous data trans-
fer within the drawing time. In the original procedure, both
data transfer and rendering steps are sequentially executed
in GPU at each time step of animation. In contrast, data
transfer by DMA enables us to perform asynchronous data
transfer and rendering steps occurring concurrently instead

c© 2013 The Japan Society of Plasma
Science and Nuclear Fusion Research

1201135-1



Plasma and Fusion Research: Rapid Communications Volume 8, 1201135 (2013)

Table 1 Frames per second in the original and proposed meth-
ods.

2563 5123

Original 15.23 2.05
PBO 30.0 4.25

PBO +Async 30.0 5.00

of sequentially [7].
In CAVE applications, the OpenGL context and the

animation timing must be shared by all display threads
and transfer threads in this asynchronous data transfer
method. Because DMA maps OpenGL memory onto
virtual memory and gives a virtual address, we can ac-
cess OpenGL memory through this virtual address in the
transfer thread. We use the well-known C++ library
Boost.Thread and Boost.ASIO to handle threads for
data transfer. Boost.ASIO is used to synchronize threads
to display the same graphic snapshot.

The effects of our new volume rendering are measured
with sample data sets from a geodynamo MHD simula-
tion [8] with 2563 and 5123 grid points with 12 or more
temporal sequences. The typical number of texture slices
is 64 and 256, respectively. Other slice numbers have been
tried, but they do not affect the frame rate. We have also
confirmed that the frame rate does not decrease with the
number of temporal sequences for the animation. The π-
CAVE system [8] is used for this experiment.

The π-CAVE is a four-screen system with a rectan-
gular box geometry of 3 m (height) × 3 m (depth) ×
7.8 m (width). It can be controlled by two different com-
puter systems. One is a Windows-based cluster system [7
nodes × Intel XeonW3680 (12 cores), Quadro 5000, and
24 GB RAM] and the other is a Linux-based shared mem-
ory system [QuadroPlex D2 2200 × 3 and 192 GB RAM].
CAVELib is configured for 12 display threads. A wand and
10 VICON cameras are used in the tracking system. Our
volume rendering program runs on both Linux and Win-
dows systems.

The results are summarized in Table 1. Note that the

frame rate for the 5123 grid data in the original method
is approximately two frames per second (FPS), which is
intolerably small for the CAVE visualization environment.

In case 2563, both methods “PBO” (with only PBO
transfer implemented) and “PBO +Async” (with asyn-
chronous transfer added) lead to an effectively maximum
value of 30 FPS. Our π-CAVE system adopts the time divi-
sion switching method for stereoscopic viewing, which in
practice imposes a maximum on the frame rate for images.
In our environment, the maximum value is set to 30 FPS.

In case 5123, “PBO +Async” achieves to 5 FPS, a siz-
able increase over the 2 FPS in the original method.

We developed a high-speed volume rendering method
for 3D animated visualization of scalar data in CAVEs.
The key is to combine 3D data transfer by PBO with an
asynchronous data transfer method. The frame rate of our
new 4D volume rendering program realizes 30 FPS for
2563 grid point data. Even for 5123 grid point data, it at-
tains 5 FPS, which is an acceptable value for visualizations
in a CAVE. The 4D volume rendering method reported in
this Rapid Communication is implemented as a library and
has already been applied to several CAVE applications in
our π-CAVE [8] system.

Acknowledgments
This work was supported by JSPS KAKENHI Grant

numbers 24740125 and 23340128.

[1] T. Möller, E. Haines and N. Hoffman, Real-Time Rendering,
A.K. Peters (Wellesley, Mass., 2008).

[2] J.P. Schulze and A.S. Forsberg, Brown University, Depart-
ment of Computer Science Report, 2005.

[3] N. Ohno and A. Kageyama, Phys. Earth Planet. Inter. 163(1-
4), 305 (2007).

[4] H. Ohtani and R. Horiuchi, Plasma Fusion Res. 3, 054
(2008).

[5] N. Ohno, H. Ohtani, D. Matsuoka and R. Horiuchi, Plasma
Fusion Res. 7, 1401001 (2012).

[6] T. Lewiner, Preprint No. MAT. 16/06, Department of Math-
ematics, PUC - Rio de Janeiro, Brazil, 2006.

[7] S. Venkataraman, In GPU Technology Conference 2009,
volume 1102, 2009.

[8] A. Kageyama and Y. Masada, In IOP Journal of Physics:
Conference Series 454, 012077 (2013).

1201135-2


