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To generate a smooth implicit function that behaves naturally over an entire domain, a method to smoothly
combine an implicit function f (x) with a global support function g(x) has been proposed. The proposed method
can be applied to large scattered point data, since the implicit function f (x) is generated by a partition-of-unity-
based method. The global support function g(x) is generated by a radial basis function-based method or by
the least-squares method. To ensure a smooth combination of f (x) and g(x), an appropriate weight function is
employed. In numerical experiments, the proposed method is applied to large point data. The results illustrate
that the proposed method can generate a smooth implicit function F(x) with natural behavior over the entire
domain. In addition, on the given points, the accuracy of F(x) is exactly the same as that of f (x). Furthermore,
the computational cost for generation of F(x) is almost the same as that of f (x).
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1. Introduction
Many kinds of meshless methods have been proposed,

and applied to numerical simulations in various fields, in-
cluding plasma physics and fusion science. In the mesh-
less methods, although elements representing a geometri-
cal structure are not necessary, an analysis domain must
be defined. To define the analysis domain, an implicit
function [1–3] is sometimes employed in meshless meth-
ods such as the eXtended Boundary-Node Method (X-
BNM) [4]. In the X-BNM, it is assumed that, by using
the implicit function f (x), the boundary of the analysis do-
main is represented by f (x) = 0.

In general, an implicit function f (x) has the following
properties:

{
f (x) < 0, (inside of surface),
f (x) > 0, (outside of surface).

(1)

To generate an implicit function f (x) from large scattered
point data, partition-of-unity-based methods such as the
Multi-level Partition of Unity implicits (MPU) method [1]
are often employed. However, the generated implicit func-
tion f (x) has a support; namely, f (x) = 0 is distributed
not only on the surface but also outside the support. This
is not natural behavior for an implicit function, since the
requirements of Eq. (1) are not satisfied. Especially in
the X-BNM, since a procedure of finding the boundary
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f (x) = 0 is indispensable for evaluating the influence coef-
ficients [4], it is desirable that f (x) = 0 is only distributed
on the boundary.

The purpose of the present study is to generate an im-
plicit function satisfying the requirements of Eq. (1) over
the entire domain. To this end, an implicit function f (x)
and a global support function g(x) are smoothly combined
by using an appropriate weight function.

2. Generation of Implicit Function
In this section, we consider generating an implicit

function f (x) from large scattered point data. The original
surface from which the given points were obtained is re-
constructed as the implicit representation: f (x) = 0, where
x = [x, y, z]T ∈ R3. In addition, the function f (x) satisfies
Eq. (1).

Given a collection of n points that are scattered in a
domain, P = {x1, x2, . . . , xn}, together with normals N =
{n1, n2, . . . , nn} on each of the given points [3]. We can
think of the surface as a scalar-valued function f (x) such
that f (xi) = 0 (i = 1, 2, . . . , n).

To generate an implicit function f (x) from a number
of points, the partition-of-unity-based methods have been
proposed by Ohtake et al. [1] and Tobor et al. [2]. In
these methods, a bounded domain Ω is divided into a set
of subdomainsΩ(k) (k = 1, 2, . . . ,M), where M is the num-
ber of subdomains. Note that each subdomain is defined
as a sphere in Ref. [1] and as an ellipsoid or a rectangle
in Ref. [2]. In addition, adjacent subdomains are slightly
overlapped. For each subdomain, a local function is com-
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Fig. 1 Distribution of f (x) on the x-y plane with z = 0.5. Here,
f (x) is normally generated by the method of Tobor et
al. [2]. An implicit surface f (x) = 0 is also illustrated in
the middle of this figure. In addition, fifteen sub-points
x̂0, x̂1, . . . , x̂14 to generate g(x) are illustrated, except for
x̂13 and x̂14. The sub-point positions are determined by
spheres S a and S b and cubes Cin and Cout. Here, x̂0 is
the center of S a and S b, and Ra and Rb are the radii of S a

and S b, respectively. Note that the point data is “Bunny”
model.

puted from the points in the subdomain. A function f (x)
defined on Ω is then defined as a combination of the local
functions weighted by the partition functions w(k)(x) such
that

M∑
k=1

w(k)(x) ≡ 1 on Ω. (2)

Thus, f (x) has the following expression [1, 2]:

f (x) =
M∑

k=1

w(k)(x) f (k)(x), w(k)(x) =
ω(k)(x)∑M
j=1ω

( j)(x)
,

(3)

where f (k)(x) is a local function in Ω(k), and ω(k)(x) is
a nonnegative compactly supported function on Ω(k). In
the MPU method, the quadratic B-spline is adopted as
ω(k)(x) [1]. Note that w(k)(x) (k = 1, 2, . . . ,M) are called
“Partition of Unity (PU) functions.”

By using an implicit function f (x) generated by a PU-
based method, an object can be represented as f (x) = 0.
However, f (x) = 0 also appears in a domain beyond a
certain distance from the given points (see Fig. 1). In other
words, a PU-based method generates an implicit function
f (x) so that f (x) satisfies Eq. (1) around the given points.
Thus, f (x) has a support; that is, f (x) = 0 is distributed
not only on the surface but also outside the support. This is
not natural behavior for an implicit function since Eq. (1)
is not satisfied. In the next section, we present a method to
generate a smooth implicit function with natural behavior
over the entire domain.

3. Smooth Implicit Function with
Natural Behavior
In the following section, f (x) denotes an implicit

function generated by a PU-based method, and g(x) de-
notes a global support function. In this section, we present
a method to erase the support of f (x) by smoothly combin-
ing f (x) and g(x).

3.1 Rescaling given points
The given points P are first rescaled so that an axis-

aligned bounding cube C1 has a unit-length main diagonal.
Concretely, the given points P are normalized and lie in
the cube C1 so that C1 is placed in the central part of a
unit cube C2: [0, 1] × [0, 1] × [0, 1]. The normalization
procedures are as follows:

1. xk = xk − aminu (k = 1, 2, . . . , n), where amin is the
minimum value of xk, yk, and zk (k = 1, 2, . . . , n), and
u = [1, 1, 1]T;

2. xk = xk/(
√

3amax) (k = 1, 2, . . . , n), where amax is the
maximum value of xk, yk, and zk (k = 1, 2, . . . , n);

3. xk = xk + (
√

3−1 − xmin − xmax)/2 (k = 1, 2, . . . , n),
where xmin and xmax are the minimum and maximum
values of xk (k = 1, 2, . . . , n), respectively [yk and
zk (k = 1, 2, . . . , n) are similarly updated]; and

4. xk = xk+βu (k = 1, 2, . . . , n), where β = (1−√3−1)/2.

After executing the above procedures, f (x) is generated
inside C2 by a PU-based method.

3.2 Generation of global support function
To generate a global support function g(x), we first

consider a sphere S a of radius Ra and center x̂0 =

[0.5, 0.5, 0.5]T, and a sphere S b of radius Rb and center
x̂0, where Ra is determined so that all given points P are
contained inside S a, and Rb satisfies Rb > Ra. In addition,
we also consider a cube Cin inscribed in S b and a cube Cout

circumscribed about S b.
A global support function g(x) is generated from fif-

teen sub-points P̂ = {x̂0, x̂1, . . . , x̂14}, where x̂1, x̂2, . . . , x̂8

are the eight vertices of Cin, and x̂9, x̂10, . . . , x̂14 are six
tangent points between S b and Cout (see Fig. 1). In the fol-
lowing, we present two types of methods to generate g(x).

3.2.1 generation of g(x) by radial basis function-based
method

By using a Radial Basis Function-based Method
(RBFM) [3], an implicit function with natural behavior can
be directly generated from P and N . However, the RBFM
is not suitable to generate an implicit function from large
point data, since the computational cost for solving a linear
system that depends on the number of nodes is very large.
Note that, for generating g(x), we only use the fifteen sub-
points {x̂0, x̂1, . . . , x̂14}. Hence, the computational cost to
generate g(x) is small.

We assume that a global support function g(x) is ex-
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pressed as

g(x) =
14∑
i=0

λiφ(‖x − x̂i‖2) + p(x), (4)

where φ(r) is a radial basis function (RBF), λi(i =
0, 1, . . . , 14) are weights, x̂i = [x̂i, ŷi, ẑi]T(i = 0, 1, . . . , 14)
are the sub-points, and p(x) is a degree-one polynomial:
p(x) = α0 + α1x + α2y + α3z. Under the assumptions
g(x̂i) = f (x̂i) (i = 0, 1, . . . , 14), the unknowns λi and αi

are determined by solving the following linear system [3]:[
A P
PT O

] [
λ

α

]
=

[
f
0

]
, (5)

where λ = [λ0, λ1, . . . , λ14]T ∈ R15, α = [α0, α1, α2, α3]T ∈
R

4, f = [ f (x̂0), f (x̂1), . . . , f (x̂14)]T ∈ R15, ith-rows of
P ∈ R15×4 are [1, x̂i, ŷi, ẑi] (i = 0, 1, . . . , 14) and (i, j)-
elements of A ∈ R15×15 are φ(‖x̂i−x̂ j‖2) (i, j = 0, 1, . . . , 14).
Note that a globally supported RBF such as the trihar-
monic: φ(r) = r3 has to be employed, since g(x) must be
generated as a global support function.

3.2.2 generation of g(x) by the least-squares method
In a different approach, we employ the Least-Squares

Method (LSM) to generate a global function g(x). To
generate g(x) using LSM, we assume that g(x) is a three-
dimensional (3D) quadratic function expressed as

g(x) = a1x2 + a2y
2 + a3z2 + a4xy + a5yz + a6zx

+a7x + a8y + a9z + a10. (6)

The unknowns ak(k = 1, 2, . . . , 10) are determined by min-
imizing

∑14
i=0
[
g(x̂i) − f (x̂i)

]2.

3.3 Smooth combination of f (x) and g(x)
To smoothly combine f (x) and g(x), we adopt the fol-

lowing weight function:

w(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ; 0 ≤ r ≤ Ra,

1 − 6r̂2 + 8r̂3 − 3r̂4 ; Ra < r ≤ Rb,

0 ; r > Rb,

(7)

where r = ‖x − x̂0‖2, and r̂ = (r − Ra)/(Rb − Ra). Figure 2
shows the shape of the weight function w(r) and that of 1−
w(r). Note that Ra and Rb are determined by (i) R(0)

a = R(ini)
a ,

(ii) repeat R(k)
a = R(k−1)

a + βaR(ini)
a (k = 1, 2, . . . ) until S (k)

a

contains all given points P, where S (k)
a is a sphere of radius

R(k)
a with center x̂0, (iii) Ra = R(k)

a , and (iv) Rb = Ra + βb.
In our implementation, we set R(ini)

a = 0.2, βa = 0.05, and
βb = 0.1.

By using the weight function above, f (x) and g(x) can
be smoothly combined. A combined implicit function F(x)
is described as

F(x) = w(r) f (x) + [1 − w(r)]g(x). (8)

In the range Ra < r ≤ Rb, the distribution of F(x) is deter-
mined by the smooth combination of f (x) and g(x). Note

Fig. 2 Shape of the weight function w(r) and that of 1 − w(r).
Here, x̂0,Ra, and Rb are the same defined in Fig. 1.

that, in the range 0 ≤ r ≤ Ra, the distribution of F(x) is the
same as that of f (x), since w(r) = 1 in this range. Simi-
larly, in r > Rb, the distribution of F(x) is the same as that
of g(x), which does not have a support. For these reasons,
F(x) satisfies Eq. (1) over the entire domain.

4. Numerical Experiments
Numerical experiments using the point data of the

“Lucy” model are conducted to evaluate the method de-
scribed in the previous section. Computations were per-
formed on a computer equipped with a 2.66 GHz Intel Core
i7 920 processor, 24 GB RAM, Ubuntu Linux ver. 11.10,
and g++ ver. 4.6.1. Note that we only used a single core of
this processor in the experiments described herein.

Let us first investigate a distribution of f (x) and that
of F(x). Figure 3 (a) shows a distribution of f (x) generated
by the MPU method. In addition, distributions of two kinds
of F(x) are shown in Figs. 3 (b) and 3 (c), respectively. In
Figs. 3 (b) and 3 (c), the functions g(x) are generated by
RBFM and LSM, respectively. In Fig. 3, the implicit sur-
faces f (x) = 0 or F(x) = 0 are also illustrated in the middle
of each figure. To generate f (x), we set α = 1.2, λ = 0.05,
and ε = 10−3, as described in Ref. [1]. In addition, other
parameters to generate f (x) are set the same as in Ref. [1].
By using the procedures described in the previous section,
Ra and Rb are determined to be 0.34 and 0.44, respectively.
In addition, the triharmonic: φ(r) = r3 is employed as the
RBF to generate g(x) in Fig. 3 (b). We see from Figs. 3 (b)
and 3 (c) that the functions F(x) do not have a support.
Figure 4 shows the dependence of f (x) and F(x) on x with
y = z = 0.5. In this figure, “ f (x)”, “F(x) (RBFM),” and
“F(x) (LSM)” correspond to the functions in Figs. 3 (a),
3 (b), and 3 (c), respectively. We see from Figs. 3 and 4
that, for r ≤ Ra, f (x) and F(x) are exactly the same. In the
range Ra < r ≤ Rb, f (x) and g(x) are merged by the weight
function. For r > Rb, both functions F(x) change more
smoothly than f (x). Therefore we consider that the func-
tions g(x) generated by RBFM and LSM, together with
the appropriate weight function, can generate a smooth im-
plicit function F(x) satisfying the requirements of Eq. (1)
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Fig. 3 Distributions of f (x) and F(x) on the x-y plane with z = 0.5. For (a), (b), and (c), f (x) is generated by the MPU method [1]. In
addition, for obtaining F(x) using Eq. (8), g(x) is generated by RBFM for (b) and by LSM for (c). Note that an implicit surface
f (x) = 0 is also shown in the middle of (a). Similarly, implicit surfaces F(x) = 0 are shown in panels (b) and (c). The point data
is the “Lucy” model and the number n of points is 1001991.

Fig. 4 Dependence of f (x) and F(x) on x with y = z = 0.5.
Here, “ f (x)”, “F(x) (RBFM),” and “F(x) (LSM)” corre-
spond to the functions in Figs. 3 (a), 3 (b), and 3 (c), re-
spectively.

over the entire domain. The difference between the func-
tions F(x) is that, for r > Rb, F(x) generated with RBFM
increases more slowly than that generated with LSM.

Next, to evaluate the error of f (x) in Fig. 3 (a), we em-
ploy the maximum error εmax = max {| f (xi)|}ni=1. The result
is εmax = 5.9× 10−4. Similarly, we calculate the maximum
errors of the functions F(x), and find exactly the same as
εmax of f (x). Thus, on the given points, the accuracy of
f (x) is not affected by Eq. (8).

Finally, we investigate the computational cost of the
proposed method. The computational time to generate
f (x) is about 46.8 s. In addition, the computational time
of 0.006 s to generate g(x) by RBFM is almost equal to
that by LSM. Therefore the computational cost to generate
F(x) is almost the same as that of f (x), since g(x) can be
generated with a small computational cost.

5. Conclusion
To generate a smooth implicit function with natu-

ral behavior over an entire domain, we have proposed a
method to smoothly combine an implicit function f (x) and

a global support function g(x). To generate f (x) from large
point data, the implicit function f (x) is generated by a PU-
based method. To generate g(x), we appropriately set the
fifteen sub-points and generate g(x) by RBFM or LSM.
A smooth implicit function F(x) is generated by smoothly
combining f (x) and g(x) using the proposed weight func-
tion. The performance of the proposed method has been
investigated by using the “Lucy” model. Conclusions ob-
tained in the present study are summarized as follows:

1. The global support functions g(x) generated by
RBFM and LSM together with the appropriate weight
function can generate a smooth implicit function F(x)
that satisfies the requirements of Eq. (1) over the en-
tire domain.

2. On the given points, the accuracy of F(x) is exactly
the same as that of f (x).

3. The computational cost for generation of F(x) is al-
most identical to that of f (x).

In future work, an implicit function generated by the
proposed method will be built into meshless methods such
as the X-BNM. In addition, the built meshless methods will
be applied for solving partial differential equations of var-
ious fields, including plasma physics and fusion science.
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