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The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time
domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electro-
magnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes
if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily
describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain
method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where
R denotes a support radius of the weight function for the shape function. And the results indicate that the support
radius R of the weight functions should be selected small, and monomials must be used for calculating the shape
functions.
c© 2012 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: electromagnetic wave propagation, FDTD, meshless method, RPIM

DOI: 10.1585/pfr.7.2406044

1. Introduction
In the Large Helical Device (LHD), the electron cy-

clotron heating device is used for plasma heating. The
electrical power which is made by the gyrotron system
transmits to LHD by using long corrugated waveguide.
However, it is not clear that the shape of curvature of the
waveguide or transmission gain of electromagnetic wave
propagation theoretically.

Generally, Finite Difference Time Domain (FDTD)
method is applied for electromagnetic wave propagation
simulation. FDTD method has provided the solution of
Maxwell equation directly. Furthermore, FDTD method
has great advantages in terms of parallelization and treat-
ment of problems and so on. However, the numerical do-
main should be divided into rectangle meshes if FDTD
method is applied for the simulation, and it is difficult to
treat the problem constructed by arbitrary shapes.

As is well known that the mesh approach does not re-
quire finite elements or meshless of a geometrical struc-
ture. And various meshless approaches such as the
element-free Galerkin (EFG) method and the meshless lo-
cal Petrov-Galerkin (MLPG) method and the radial point
interpolation method (RPIM) have been developed [1, 2].
And these methods are applied to a variety of engineering
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fields and the fields of computational magnetics. In partic-
ular, meshless approaches based on RPIM are applied to
time dependent problems [3].

The purpose of the present study is to develop numer-
ical code for analyzing electromagnetic wave propagation
in arbitrary shapes of waveguide using meshless approach
based on RPIM.

2. Shape Function of Modified RPIM
In the Meshless Time Domain Method (MTDM), the

governing equation of the electromagnetic wave propaga-
tion phenomenon is discretized by using the shape function
of the radial point interpolation method (RPIM). The shape
function of RPIM is derived as follows.

First, we scatter N nodes x1, x2, · · · , xN in the tar-
get domain and the boundary, and assign the Radial Ba-
sis Function (RBF) w1(x), w2(x), · · · , wN(x) with compact
support to the nodes. Then, the solution u(x) can be ex-
panded as

u(x) = [w(x)T , p(x)T ]G−1

[
u
0

]
= φ(x)u, (1)

where the vector w(x), p(x), u(x) and φ(x) are defined by

w(x) = [w1(x), w2(x), · · · , wN(x)]T , (2)

p(x) = [p1(x), p2(x), · · · , pM(x)]T , (3)
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u = [u1, u2, · · · , uN]T , (4)

φ(x) = [φ1(x), φ2(x), · · · , φN(x)]T , (5)

where φi(x) denotes a shape function on i−th node. The
components of the vector p(x) are monomials of the
space variables. For example, p(x)T = [1, x, y] and
p(x)T = [1, x, y, x2, xy, y2] are monomials for the linear
and the quadratic approximation. Furthermore, the matrix
G is defined by following equation.

G =

[
W P
PT O

]
. (6)

Here, the matrices W and P are defined by following equa-
tions.

W = [w(x1),w(x2), · · · ,w(xn)]T , (7)

P = [p(x1), p(x2), · · · , p(xn)]T . (8)

Under the above assumptions, the shape function and its
derivative can be expressed as

φk(x) =
N∑

i=1

wi(x)gi,k +

M∑
j=1

p j(x)gN+ j,k, (9)

∂φk

∂x
=

N∑
i=1

∂wi(x)
∂x
gi,k +

M∑
j=1

∂p j(x)

∂x
gN+ j,k, (10)

∂φk

∂y
=

N∑
i=1

∂wi(x)
∂y
gi,k +

M∑
j=1

∂p j(x)

∂y
gN+ j,k, (11)

where, gi, j denotes the (i, j) element of matrix G−1. Note
that the shape function satisfy the Kronecker delta function
property, i.e.

φi(x j) =

{
1, i = j,
0, i � j.

(12)

In RPIM, the local domainΩi for the shape function φi

is selected by using domain of influence of RBF as shown
in Fig. 1 (a). From this reason, the matrix G must be calcu-
lated for each local domain, and it takes much CPU time to
derive the shape functions [2]. On the other hand, modified
RPIM has the advantages that the matrices Gl for Ωl can

Fig. 1 The method for selecting the local domain Ωi for the
shape function φi. (a): RPIM, (b): MRPIM.

be calculated prior for the shape function of inside of local
domain Ωl (see Fig. 1 (b)). In the present study, the shape
function derived from MRPIM is adopted for the compu-
tation [4].

3. Meshless Time Domain Method
In the present study, 2D electromagnetic wave prop-

agation of TM mode is adopted for the evaluation. The
governing equation of the problem is defined by

ε
∂Ez

∂t
= −σEz +

∂Hy
∂x
− ∂Hx

∂y
, (13)

μ
∂Hx

∂t
= −∂Ez

∂y
, (14)

μ
∂Hy
∂t
=
∂Ez

∂x
, (15)

where, Hx and Hy denote the magnetic field of x and y
component, and Ez denotes the electric field of z compo-
nent. In addition, ε, σ and μ denote permittivity, perme-
ability and electroconductivity, respectively.

First, the system is discretized with respect to time
by applying Leap Frog Method, and it is transformed to
following equations.

ε

Δt

(
En+1

z − En
z

)
+ σEn+1/2

z =
∂Hn+1/2
y

∂x
− ∂H

n+1/2
x

∂y
,

(16)

μ

Δt

(
Hn+1/2

x − Hn−1/2
x

)
= −∂E

n
z

∂y
, (17)

μ

Δt

(
Hn+1/2
y − Hn−1/2

y

)
=
∂En

z

∂x
. (18)

As we mentioned above, the shape function of RPIM
has the Kronecker delta function property (12). By using
the shape function and the property, the system can be dis-
cretized with respect to space as follows.

En+1
z,i = α

[(
ε

Δt
− σ

2

)
En

z,i

+

N∑
j=1

Hn+1/2
y, j

∂φ j

∂x
−

N∑
j=1

Hn+1/2
x, j

∂φi

∂y

⎤⎥⎥⎥⎥⎥⎥⎦ , (19)

H
n+ 1

2
x,i = H

n− 1
2

x,i −
Δt
μ

N∑
j=1

En
z, j

∂φ j

∂y
, (20)

H
n+ 1

2
y,i = H

n− 1
2

y,i +
Δt
μ

N∑
j=1

En
z, j

∂φ j

∂x
. (21)

Here, parameter α is defined as following equation.

α =
1
ε

Δt
+
σ

2

. (22)

Note that, the average of En
z,i and En+1

z,i is adopted for

En+1/2
z,i . By solving (19), (20) and (21) in each time step, we

can obtain the result that describes the behavior of the elec-
tromagnetic wave propagation in various shape of wave
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Table 1 The geometrical and the physical parameters.

Shape of source wave sine wave
Amplitude of source wave 1.0 V/m
Frequency of source wave 1.0 × 109 Hz

Speed of wave 299,792,458 m/s
Number of layer for PML 16

Reflectivity coefficient of PML -80 dB

Fig. 2 The conceptual diagram of node structure in curved wave
guide.

guide. In addition, the Perfectly Matched Layer (PML)
and the Perfect Magnetic Conductor (PMC) are used for
absorbing boundary condition and boundary condition.

4. Numerical Evaluation
4.1 Electromagnetic wave propagation in ar-

bitrary shaped wave guide
In this paper, the geometrical and the physical param-

eters are fixed as Table 1.
First, we show the conceptual diagram of node struc-

ture in curved wave guide is shown in Fig. 2. It is very dif-
ficult to evaluate the electromagnetic wave propagation in
arbitrary shaped wave guide by using the standard FDTD
method because FDTD method is generally calculated on
orthogonal mesh. And the mesh size becomes small to de-
scribe the structure of arbitrary shaped wave guide. On
the other hand, the node disposition of MTDM can eas-
ily describe the structure of arbitrary shaped wave guide
as shown in Fig. 2. This is the large advantage of MTDM
compare to the standard FDTD method.

Next, we calculate the behavior of the electromagnetic
wave propagation in various shape of wave guide, and the
analytic model of the calculation is shown in Fig. 3. We
assume that the sides of the wave guide are surrounded
by perfect magnetic conductor (PMC), and the absorb-
ing boundary condition is imposed on both end of wave
guide. As we mentioned above, the perfectly matched
layer (PML) is adopted for the condition. The distributions
of electric field Ez in S-shaped wave guide and U-shaped
wave guide are shown in Fig. 4. We see from these figures
that the distributions of electric field Ez in various shaped

Fig. 3 Analytic domain of S-shaped wave guide and U-shaped
wave guide.

Fig. 4 The distribution of electric field Ez in S-shaped and U-
shaped wave guide.

wave guide are calculated clearly, and the distributions of
electric field Ez can be observed in each time step.

4.2 Evaluation of shape functions
In the present study, following three types of weight

function are adopted for (7).

w(r) = e
−c1

( r
R

)2

, (23)

w(r) = 1.0 − 6.0
( r
R

)2
+ 8.0

( r
R

)3
− 3.0

( r
R

)4
, (24)

w(r) = (r2 + R2)−0.5. (25)

Here, r is defined by r = |x − xi|, and R denotes a support
radius of the weight function. Besides, c1 denotes a pa-
rameter. The influence of the weight function for the shape
function on damping rate is investigated in this section.
The analytic model and the distribution of electric field Ez

in line shaped wave guide for the evaluation is shown in
Fig. 5.

The damping rate RD in line shaped wave guide is
plotted as the function of support radius R in Fig. 6 and
Fig. 7. The value of damping rate R is calculated by using
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Fig. 5 Analytic domain of line shaped wave guide and the distri-
bution of electric field Ez in line shaped wave guide. Γin

and Γout denote source input line and observation line, re-
spectively.

Fig. 6 The damping rate RD in line shaped wave guide is plot-
ted as the function of support radius R. Note that the
no monomial basis is used for calculation of shape func-
tion. Here, (A): Eq. (23) with c1 = 0.1, (B): Eq. (23) with
c1 = 1.0, (C): Eq. (23) with c1 = 5.0, (D): Eq. (24), (E):
Eq. (25).

following equation.

RD =

∫
Γout

Ez dl /
∫
Γin

Ez dl. (26)

Here, Γin and Γout denote a source input line and observa-
tion line, and the values of RD have been calculated on the
value of Ez past the line Γout in a certain time step. We
can see from Fig. 6 that the values of damping rate RD are
less than 1.0 even if the support radius is small. Moreover,
the values of RD diverge in case of R > 0.02 or unstable
behaviors are observed.

On the other hand, the values of damping rate RD in
Fig. 7 are stably calculated and RD � 1.0 in case with R <
0.03. These results indicate that the support radius R of the
weight functions should be selected small, and monomials
p(x) must be used for calculating the shape functions.

Fig. 7 The damping rate RD in line shaped wave guide is plotted
as the function of support radius R. Note that the linear
monomial basis (i.e. p(x) = [1, x, y]T ) is used for calcula-
tion of shape function. Here, (A): Eq. (23) with c1 = 0.1,
(B): Eq. (23) with c1 = 1.0, (C): Eq. (23) with c1 = 5.0,
(D): Eq. (24), (E): Eq. (25).

5. Conclusion
We have developed the numerical simulation code for

the electromagnetic wave propagation in various shaped
wave guide. In addition, we have evaluated the influence
of the weight function for the shape function on damping
rate of the wave guide.

Conclusions obtained in the present study are summa-
rized as follows.

• The node disposition of MTDM can easily describe
the structure of arbitrary shaped wave guide. This is
the large advantage of MTDM compared to the stan-
dard FDTD method.
• The distributions of electric field Ez in various shaped

wave guide are calculated clearly, and the distribu-
tions of electric field Ez can be observed in each time
step by means of the MTDM code.
• The support radius R of the weight functions should

be selected small, and monomials must be used for
calculating the shape functions.
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