
Plasma and Fusion Research: Regular Articles Volume 7, 2405058 (2012)

Performance Improvement in Real-Time Mapping of Thomson
Scattering Data to Flux Coordinates in LHD∗)

Masahiko EMOTO, Masanobu YOSHIDA, Chihiro SUZUKI, Yasuhiro SUZUKI, Katsumi IDA,
Yoshio NAGAYAMA, Tsuyoshi AKIYAMA, Kazuo KAWAHATA, Kazumichi NARIHARA,

Tokihiko TOKUZAWA and Ichihiro YAMADA
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan

(Received 30 December 2011 / Accepted 15 March 2012)

More than 100 diagnostic devices are attached to the vacuum vessel of the Large Helical Device (LHD); they
measure various aspects of the plasma physics. Because the shape of the LHD plasma is not symmetric, each
diagnostic obtains the physical values in a different cross section. For example, the Thomson scattering system
measures the electron temperature profile in the horizontally elongated cross section, and the laser interferometer
measures the line-integrated electron density profile in the vertically elongated cross section. To analyze the data
obtained by different diagnostics, their measurement positions must be mapped to a unified coordinate system,
the flux coordinate system. Therefore, the authors have been building a database to map the physical coordinates
to the flux coordinates. A system for mapping the electron temperature profile to the flux coordinates, TSMAP,
has been developed using the database. The profiles calculated by TSMAP are fundamental data for analyzing
the plasma physics during an experiment. Therefore, they must be obtained as soon as possible. However, the
execution of TSMAP requires computational power, and the performance of a typical personal computer is not
high enough to keep up with the 3-min plasma discharge cycle. To increase the performance, the authors use a
parallel computing approach. Because the fitting calculation for each time is independent, the calculations for
different times can be executed simultaneously. Using this approach, the authors increased the performance by
25 times, achieving a 25-s execution time.

c© 2012 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: PC cluster, real-time, Python

DOI: 10.1585/pfr.7.2405058

1. Introduction
Flux coordinates are more useful than Cartesian coor-

dinates for analyzing the plasma behavior in the Large He-
lical Device (LHD). For example, the YAG laser Thomson
scattering system measures the electric temperature pro-
file horizontally, whereas the far infrared (FIR) laser array
measure the line-integrated electron density profile verti-
cally. To obtain the electron density profile, these two re-
sults must be calibrated. For this purpose, they have to
mapped to unique coordinates, or flux coordinates. There-
fore, to analyze the data obtained by the different diagnos-
tics, their measurement positions must be mapped to the
flux coordinates. Therefore, the authors have developed a
system called TSMAP (Thomson Scattering MAPping) to
map the measured position from the Cartesian coordinates
to the flux coordinates [1]. An example is shown in Fig. 1.
The profiles are plotted for the effective minor radius reff .
This is an averaged minor radius that is constant on the
same flux surface; thus, it is a flux coordinate. By using
the effective minor radius, one can compare the Thomson

author’s e-mail: emo@nifs.ac.jp
∗) This article is based on the presentation at the 21st International Toki
Conference (ITC21).

scattering data and the FIR laser interferometry data.
The principle of TSMAP is as follows. Because an

electron moves along a field line with a speed comparable
to the light velocity, the electron temperature on a flux sur-
face is constant. TSMAP searches for an LHD equilibrium
that fits the electron temperature profile, which is measured
using the Thomson scattering system. The Thomson scat-
tering measurement is executed 10 times per second in the
LHD. A typical LHD plasma shot lasts for about 4 s, and
the repetition time of the LHD plasma is 3 min. Thus, the
mapping calculation should be done 40 times within 3 min.
The equilibrium in a helical confinement system for typical
experimental parameters is generally calculated in advance
using the VMEC code [2]. TSMAP looks for the best fitted
data from the database.

It currently takes more than 600 s for TSMAP to com-
plete the calculation. To enhance the performance, the au-
thors use two servers and six clients to calculate the profiles
of different plasma shots simultaneously; this approach can
keep up with the experimental cycle (Fig. 2). In this sys-
tem, the authors use virtual machines as clients instead of
physical machines. Using virtual machines makes it easy
to enhance the performance simply by copying the virtual
machine images. However, this method does not reduce

c© 2012 The Japan Society of Plasma
Science and Nuclear Fusion Research

2405058-1



Plasma and Fusion Research: Regular Articles Volume 7, 2405058 (2012)

Fig. 1 Electron density profiles in flux coordinates measured by
Thomson scattering and FIR interferometer.

Fig. 2 Each computer calculates mapping data for a given shot
number.

the calculation time for single-shot data. Therefore, it is
necessary to enhance the calculation speed for a single
shot. Because the calculation of a certain time is indepen-
dent of the calculation of other times, these calculations
can be executed simultaneously.

2. System Overview
Figure 3 shows an overview of the prototype system.

It differs from the previous system in that the client pro-
gram runs on one actual PC. The original program was

Fig. 3 Each process calculates the mapping data for a given time
frame of the same shot number.

written in PV-Wave, but the new program was rewritten in
Python. The reason is that it is difficult to implement paral-
lel computing using PV-Wave. Many computer languages
can be used to write parallel programs. One of the reasons
to choose Python is that there are many scientific packages
for handling experimental data. For example, NumPy [3]
provides an array handling interface similar to that of PV-
Wave, and it is relatively easy to migrate from PV-Wave
to Python. To write a parallel program in Python, there
are two useful standard packages, multithreading and mul-
tiprocessing. The former is used for multithread program-
ming in Python. The latter was developed later to write
multiprocess programs using interfaces similar to those
of the multithreading package. Using multiple threads is
generally faster than using multiple processes because less
overhead is required to create a new thread than to create
a new process. However, the most popular Python imple-
mentation, CPython, does not use a native thread library,
and the Python interpreter has to switch the program con-
text of threads by itself [4]. Even when the Python inter-
preter executes multiple threads, only one thread is running
from the viewpoint of the operating system. Therefore, it
cannot use multiple CPU cores at the same time even when
the multithreading package is used, and it cannot take ad-
vantage of a multiple-CPU core architecture to reduce the
calculation time. On the other hand, when the multipro-
cessing package is used, the context switch is managed by
the operating system, and full use can be made of the mul-
tiple CPU cores. Other Python implementations exist, such
as Jython, which is written in Java, or PyPy, which is writ-
ten in Python itself. The Jython implementation uses the
Java thread library, and it can use multiple CPU cores at
the same time. However, it cannot use existing external li-
braries, such as NumPy, to handle LHD experiment data.
Therefore, the authors chose CPython and a multiprocess-
ing package instead of a multithreading package.

Figure 4 shows the essential parts of this program.

2405058-2



Plasma and Fusion Research: Regular Articles Volume 7, 2405058 (2012)

Fig. 4 PV-Wave is rewritten in Python to be calculated by mul-
tiple processes.

Figure 4-b) is the Python code, which is directly translated
from the original PV-Wave code in Fig. 4-a). In the original
code, the calculation is executed over time slices indexed
by t. Because the calculation when t = ti is independent of
the calculation when t = t j, the code inside the loop can be
executed in parallel. Therefore, Fig. 4-b) can be rewritten
as shown in Fig. 4-c). The code inside the loop is calcu-
lated by multiple processes, in this case 64 processes, si-
multaneously. Each process calculates the best fitted value
for a given time. TSMAP searches for the best fitting value
in the flux coordinates for the changing plasma parameters.

TSMAP adopts a client-server architecture; it asks the
severs for the flux coordinates corresponding to the actual
coordinates, and TSMAP calculates the best fitted values
in flux coordinates. By using the multiprocess scheme,
TSMAP can use the client CPU power more efficiently;
while one process is waiting for the server response, an-
other can use the client CPU. Figure 5 shows an example.
When only one process is running, 50% of the CPU time is
idle because it must wait for the server response. However,
when six processes are running at the same time in a two-
CPU PC, the total calculation speed is 3 times faster than
that of single process even though it has only two CPUs.

Because TSMAP is a client-server program, the per-
formance depends on the number of servers as well as the
number of processes. TSMAP currently uses two servers.
To study the dependencies, the authors measured the calcu-
lation speed while increasing the number of processes and

Fig. 5 Execution scheduling; the CPU can be used by one client
process while another waits for the server results.

Table 1 Specifications: The client is the PC that runs TSMAP,
and the server is the PC that provides the coordinate data
for the client.

the number of servers. The hardware specifications used in
these measurements are listed in Table 1.

3. Result
Figure 6 shows the results. The x axis indicates the

number of processes, and the y axis is the relative calcula-
tion speed. The relative calculation speed is the reciprocal
of the time that TSMAP spends on calculation. It is set
to one when the number of processes is one. The calcula-
tion speed grows linearly when the number of processes is
small, but the growth ratio declines as the number of pro-
cesses increases. Moreover, as the number of servers (CPU
cores) increases, the linearly growing part becomes large,
and the calculation speed increases. When 4 servers or 40
CPU cores are used, the relative calculation speed reaches
25 when 64 processes are running. This means that the
calculation is completed in 25 s.

When the number of server CPU cores is 40, the cal-
culation speed seems to saturate when the number of pro-
cesses is 30. If we can find the cause of the saturation,
the calculation speed can be enhanced. The network is a
possible bottleneck. However, during this measurement,
the network traffic from the client to each server is at most
3 Mbps, and the client and the servers are connected via
a 1 Gbps network. Therefore, it is difficult to believe that
the network is the bottleneck. Another possibility is that
the number of processes exceeds the client CPU capability.

2405058-3



Plasma and Fusion Research: Regular Articles Volume 7, 2405058 (2012)

Fig. 6 Relative calculation speed vs. number of processes.

Fig. 7 Comparison of four-core client and eight-core client.

To verify this assumption, the calculation speed was mea-
sured using an eight-core PC instead of a four-core PC as
the client PC. The difference between four and eight cores

is shown in Fig. 7. The difference in the calculation speed
is small, and the bottleneck does not seem to be the number
of client CPU cores. Furthermore, because the CPU load of
the server is about 30% at most, the number of server CPU
cores is not the bottleneck, either. Therefore, the authors
suspect that the bottleneck is the disk I/O, such as looking
for data in the database or reading files from the disks. If
this assumption is true, the performance can be enhanced
by replacing the existing disk with a faster one, such as a
solid-state disk. However, further analysis is required to
verify this.

4. Conclusion
The authors modified the current TSMAP program to

develop a prototype system for executing the calculations
in parallel. With this system, the calculation speed be-
comes 25 times faster than that of the current system, or
25 s. This is not short enough to keep up with the 3-min
plasma discharge cycle considering that TSMAP requires
Thomson scattering and FIR data. However, using this
method with other analysis, the authors think it is possi-
ble to realize real-time analysis during an experiment.

Acknowledgment
The authors thank the LHD experiment group and the

technical staff of LHD for their support of this work. This
work was supported by the National Institute for Fusion
Science (budget no.: NIFS10ULHH014).

[1] M. Emoto et al., 8th IAEA Technical Meeting, San Fran-
cisco, 2011.

[2] S.P. Hirshman and O. Betancourt, J. Comput. Phys. 96, 99
(1991).

[3] http://www.numpy.org/
[4] D. Beazely, Python Concurrency Workshop, Chicago, 2009.

2405058-4


