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A numerical method is proposed for analyzing the shielding current density in a high-temperature super-
conducting (HTS) film containing cracks/holes. If an HTS film contains cracks or holes, an integral form of
Faraday’s law is also imposed as the boundary condition. Since the integral form can be completely incorporated
into the weak form, it is regarded as the natural boundary condition. Thus, the weak form has only to be solved
with the essential boundary conditions. However, the resulting numerical solution does not satisfy the integral
form exactly. In order to resolve this problem, the following method is proposed: virtual voltages be applied
along the surfaces of cracks and holes so as to have Faraday’s law numerically satisfied. By using the proposed
method, the influence of a crack on the permanent magnet method is investigated numerically.
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1. Introduction
Recently, high-temperature superconductors (HTSs)

have been used for numerous engineering applications:
fusion magnet, energy storage system, power cable and
magnetic shielding apparatus. Since the evaluation of the
shielding current density is indispensable for the design of
engineering applications, several numerical methods [1–3]
have been so far proposed to calculate the shielding current
density. However, almost all of them can be applied only
to an HTS sample containing neither a hole nor a crack.

The purpose of the present study is to develop an ac-
curate and stable method for analyzing the time-dependent
shielding current density in an HTS film with cracks and
holes. Moreover, the influence of a crack on the permanent
magnet method [4,5] is numerically investigated by means
of the method.

2. Governing Equation
In this section, we explain the governing equation of

the shielding current density j in an HTS film containing
both cracks and holes. Let us first assume that an HTS
film of thickness b is exposed to the time-dependent mag-
netic field B/μ0 and that it has the same cross section Ω
through the thickness direction. The boundary ∂Ω of the
cross section consists of not only the outer boundary C0
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Fig. 1 A schematic view of holes and cracks in the cross section
of an HTS film.

but the inner boundaries, C1,C2, · · · ,CN (see Fig. 1). Ap-
parently, C1,C2, · · · ,CN indicate the surfaces of cracks or
holes.

By taking the thickness direction as z-axis and choos-
ing the centroid of the film as the origin, we use the Carte-
sian coordinate system 〈O : ex, ey, ez〉. In the following, x
and x′ are position vectors of two points in the xy plane.
In addition, Ωk denotes the region enclosed by Ck and n
denotes a unit normal on ∂Ω.

Under the thin-plate approximation [1–3], there exists
a scalar function S (x, t) such that

j = (2/b)(∇S × ez). (1)

In terms of S (x, t), the boundary condition j · n = 0 on ∂Ω
can be written in the form,
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S = 0 on C0, (2)

S = S k(t) on Ck (k = 1, 2, · · · ,N). (3)

Here, S k’s are unknown functions of time.
The time evolution of the scalar function S (x, t) is

governed by the following integro-differential equation
[2, 3]:

μ0∂t(ŴS ) + ez · (∇ × E) = −∂t〈B · ez〉, (4)

where 〈 〉means an average over the thickness and E is the
electric field. In addition, the operator Ŵ is defined by

ŴS ≡ 2S (x, t)
b

+

�
Ω

Q(|x − x′|) S (x′, t) d2x′

+

N∑
l=1

�
Ωl

Q(|x − x′|) d2x′ · S l(t), (5)

where the explicit form of the integration kernel Q(r) is
given in [3]. Note that, as compared with Ŵ for the case
where an HTS film contains no holes [3], the third term in
the right-hand side of (5) is added to the definition of Ŵ.

As is well known, E is closely related to j in an HTS
film. The relation is called the J-E constitutive relation.
As the relation, we adopt the power law [2, 3, 6, 7]:

E = E(| j|) j
| j| , E( j) = EC

(
j

jC

)N

,

where EC and jC denote the critical electric field and the
critical current density, respectively, and N is a constant.

The initial condition to (4) is assumed as follows: S =
0 at t = 0. On the other hand, not only (2) and (3) but
also the following equations are imposed as the boundary
conditions to (4):

μ0
d
dt
ωk[S ] +

∮
Ck

E · t ds = − dΦk

dt

(k = 1, 2, · · · ,N). (6)

Here, s denotes an arclength along Ck andΦk(t) is the mag-
netic flux linked in Ωk. Furthermore, the functional ωk[S ]
is defined by

ωk[S ] ≡ 2S k(t)Ak

b

+

�
Ωk

d2x
�
Ω

d2x′Q(|x − x′|) S (x′, t)

+

N∑
l=1

�
Ωk

d2x
�
Ωl

d2x′Q(|x − x′|) · S l(t),

where Ak is an area of Ωk. Incidentally, (6) is the integral
form of Faraday’s law.

By solving the initial-boundary-value problem of (4),
we can determine the time evolution of the scalar function
S (x, t). Once S (x, t) is determined at each time, the shield-
ing current density j(x, t) can be easily evaluated by using
(1). Apparently, the above method for calculating j(x, t) is
unaffected by the existence of cracks or holes.

3. Virtual Voltage Method
In this section, the numerical method for solving the

initial-boundary-value problem of (4) is described in detail.
In the following, the superscript (n) denotes the value at
time t = nΔt, where Δt is a time-step size.

If the initial-boundary-value problem of (4) is dis-
cretized with the backward Euler method, S (n) becomes a
solution of the following nonlinear boundary-value prob-
lem:

ĜS ≡ μ0ŴS + Δt ez · (∇ × E) − u = 0, (7)

γk[S ] ≡ μ0ωk[S ] + Δt
∮

Ck

E · t ds − υk = 0,

(k = 1, 2, · · · ,N) (8)

S ∈ H(Ω̄). (9)

Here, u = μ0ŴS (n−1) − 〈B(n) − B(n−1)〉 · ez and υk =

μ0ωk[S (n−1)] − (Φ(n)
k − Φ(n−1)

k ). In addition, the function
space H(Ω̄) is defined by

H(Ω̄) ≡
{

w(x) : w = 0 on C0,

∂w
∂s
= 0 on Ck (k = 1, 2, · · · ,N)

}
.

After a straightforward calculation, we can get the
weak form that is equivalent to (7) and (8). It must be noted
here that the derived weak form completely includes the
boundary condition (8). In general, if a boundary condition
is incorporated into the weak form, it is called the natural
boundary condition. In this sense, (8) is the natural bound-
ary condition though its form is considerably complicated.
As is well known, the natural boundary condition is not
exactly satisfied by the numerical solution. Therefore, the
numerically evaluated value Nk[S ] of γk[S ] does not al-
ways vanish. In fact, the results of computations show that
these tendencies become remarkable with a decrease in b.

In order to resolve this difficulty, we propose the vir-
tual voltage method: a virtual voltage φk be applied along
Ck so that Nk[S ] may be exactly equal to zero. Here,
φ1, φ2, · · · , φN are all unknown constants. Specifically, the
natural boundary condition (8) is replaced with the follow-
ing two conditions:

γk[S ] = Δt φk (k = 1, 2, · · · ,N), (10)

Nk[S ] = 0 (k = 1, 2, · · · ,N). (11)

The resulting nonlinear boundary-value problem is solved
with the Newton method to get (S , {φk}Nk=1). At each iter-
ation cycle of the Newton method, the linear boundary-
value problem is solved by means of the finite element
method.

4. Numerical Simulation
By using the above method, a numerical code has been

developed for analyzing the time evolution of the shielding
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current density. In this section, we numerically reproduce
the permanent magnet (PM) method [4,5] by means of the
code.

4.1 PM method
The PM method is one of the contactless methods for

measuring jC. In the method, a cylindrical permanent mag-
net of radius R and height H is placed above an HTS film
so that the symmetry axis of the magnet may be vertical
to the film surface. The magnet is first brought closer to
the film and it is subsequently moved away from the film.
During the movement of the magnet, the electromagnetic
force acting on the film is measured. According to the pi-
oneering experiment by Ohshima et al. [4], the maximum
repulsive force is roughly proportional to jC. This result
suggests that jC can be estimated from the measured value
of the maximum repulsive force.

In the PM method, time variation of the magnetic field
B/μ0 is caused by moving the permanent magnet. In order
to simulate the movement, the distance L(t) between the
magnet bottom and the film surface is assumed as follows:
L(t) = Lmin + (Lmax − Lmin)(t/τ0 − 1)[2H(t/τ0 − 1) − 1].
Here, Lmax and Lmin are the maximum and the minimum of
L(t), respectively, and τ0 denotes time at which L(t) = Lmin

is satisfied. Also, H(x) is Heaviside’s step function.
Throughout the present study, an HTS film is assumed

to have a square cross section of side length a. Further-
more, it is assumed to contain a crack whose cross section
is a line segment connecting two points, (0,±Lc/2), in the
xy plane. In the following, the geometrical and physical
parameters are fixed as follows: a = 40 mm, b = 1 µm,
EC = 0.1 mV/m, N = 20, Lmax = 20 mm, Lmin = 0.5 mm,
τ0 = 39 s, R = 2.5 mm, H = 3.0 mm, BF = 0.3 T, and
(xPM, yPM) = (0 mm, 0 mm). Here, (x, y) = (xPM, yPM) de-
notes the symmetry axis of the permanent magnet. In ad-
dition, BF is the magnitude of the magnetic flux density at
(x, y, z) = (xPM, yPM, b/2) for L(t) = Lmin and it is adopted
as the measure of the intensity of the permanent magnet.

4.2 Influence of crack on PM method
Let us first derive the formula for estimating jC by

using an HTS film without any holes or cracks. After ex-
ecuting the numerical code with the value of jC fixed, the
electromagnetic force Fz is evaluated. The dependence of
Fz on L is numerically determined and is depicted in Fig. 2.
By extrapolating the repulsive branch of the resulting Fz-L
curve, we can calculate the value of Fz for L = 0 mm. The
value is called a maximum repulsive force and is denoted
by FM.

The values of FM are calculated for various values of
jC and are plotted in the inset of Fig. 2. This inset indicates
that jC changes in approximate proportion to FM. By ap-
plying the least-squares fitting to data points in the inset,
we find jC 
 CFM/b ≡ f (FM/b), where C is a proportion-
ality constant. In the numerical simulation, FM is calcu-

Fig. 2 Dependence of the electromagnetic force Fz on the dis-
tance L for the case with jC = 3.2 MA/cm2. The inset
shows the dependence of the maximum repulsive force
FM on the critical current density jC.

(a)

(b)

Fig. 3 Spatial distributions of the shielding current density at t =
τ0 for the case with jC = 3.2 MA/cm2. Here, (a) Lc =

3.2 mm and (b) Lc = 9.6 mm. In both figures, cracks are
denoted by thick line segments.

lated and, subsequently, the estimated value j∗C of the crit-
ical current density is determined by using j∗C = f (FM/b).

As the measure of the accuracy of the PM method, we
use the relative error defined by ε ≡ | j∗C − jC|/ jC. Note
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Fig. 4 Dependence of the relative error ε on the crack size Lc for
the case with jC = 3.2 MA/cm2.

that the estimation formula j∗C = f (FM/b) is derived for
the case where an HTS film contains neither a crack nor
a hole. In other words, its accuracy remains high if and
only if the shielding current density is almost axisymmet-
ric. Therefore, if the axial symmetry of the j-distribution
is lost, the relative error ε increases considerably.

Next, we investigate how the PM method is affected
by the crack size. To this end, the j-distributions are de-
termined for various values of the crack size Lc. Typical
examples of the j-distributions are shown in Figs. 3 (a) and
3 (b). For the case with Lc = 3.2 mm, the j-distribution is
almost axisymmetric and, hence, it is hardly influenced by
the crack. In contrast, for the case with Lc = 9.6 mm, it is
deformed prolately so that the axial symmetry is broken.
These results imply that an increase in Lc will degrade the
accuracy of the PM method. In order to investigate this
tendency quantitatively, the relative error ε is evaluated as
a function of Lc and is depicted in Fig. 4. As is expected,
the relative error monotonously increases with the crack
size. This monotonous increase of ε is based on the fact
that the axial symmetry of the j-distribution is gradually
lost with increasing crack size.

5. Conclusion
We have proposed an accurate and stable method for

calculating the shielding current density in an HTS film
containing cracks and holes. The basic idea of this method
is to apply virtual voltages along the surfaces of cracks
and holes so as to have Faraday’s law numerically satis-
fied. On the basis of the proposed method, a numerical
code has been developed for analyzing the time evolution
of the shielding current density. As an application of the
code, the influence of a crack on the PM method has been
investigated numerically.

Conclusions obtained in the present study are summa-
rized as follows: the axial symmetry of the j-distribution
is gradually lost with an increase in the crack size until the
accuracy of the PM method is degraded remarkably.
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