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Wavelet-Based Analysis of Lower Hybrid Full-Wave Fields∗)
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In this paper, we introduce the use of Continuous-Wavelet-Transform (CWT) to postprocess full-wave fields
of Lower Hybrid (LH) waves which have been generated using the LHEAF code. Compared to the Fourier
transform, the CWT has the appealing property of yielding information as to the spatial location of spectral
modes. Using a complex-Morlet CWT, the complicated full-wave field pattern is decomposed into its spectral
components parallel to the static magnetic field n‖. In general, the CWT of the LHEAF full-wave fields shows
that the local wave spectrum broadens as the waves propagate through the plasma and after reflection off the low
density cutoff or the vacuum vessel walls. The goal of this analysis is to provide a tool to assess the importance
of full-wave effects on the transformation of the wave n‖ spectrum which governs the LH power absorption and
driven currents.
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1. Introduction
The dynamics of Lower Hybrid (LH) waves in a

plasma is well understood in therms of the evolution of
their n‖ spectrum. In full-wave methods the information
about the local n‖ wave spectrum is not readily available as
in ray-tracing codes and must be recovered from the wave
fields.

Based on the experience built upon ray-tracing codes,
one may expect certain spectral components to be spatially
localized, at least for the cases when stochastic effects are
unimportant [1]. In mathematical terms that is to say the
wave fields are non-stationary along a flux surface.

Fourier transform of the parallel wave fields along the
field lines can provide insight into what spectral compo-
nents exist on flux surfaces, however it does not provide
any information about their spatial localization. Instead,
the Continuous Wavelet Transform (CWT) can be used de-
compose the complicated full-wave field patterns into its
local n‖ = c k‖/ω spectral components along a field line.

A similar analysis was first described in Ref. [2], for
the visualization of dispersion, amplitude and wave po-
larization information of full-wave fields in the context
of full-wave ICRF mode-conversion simulations in 1D. In
this paper the LH full-wave fields from the LHEAF code
[3, 4] are analyzed.

2. Wavelet Analysis Formalism
To first approximation, a Wavelet Transform (WT) can

be thought of as technique to extract the spectrogram of a
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signal. As in Windowed Fourier Transform (WFT), a sig-
nal spectrum is Fourier analyzed in segments of size xw,
each small enough for the portions of the signal to be as-
sumed stationary. However, unlike the WFT, which uses a
constant xw for all frequencies, the WT analyzes each fre-
quency component with a xw matched to its scale. In other
words, the WT is designed to have good spatial but poor
spectral resolution for high frequency components, and
viceversa for low frequency components. This approach
minimizes two conflicting types of errors: the Heisenberg
error

ΔkH ∝ 1
xw
, (1)

and the gradients error

Δk∇ =
∂k
∂x

xw, (2)

over a wide range of frequency components, under the as-
sumption that long wavelength variations occur on a scale
length which is longer than the one of short wavelength
variations, as it is often the case in physical systems.

2.1 Wavelet transform
The wavelet transform of a signal f (x) is obtained by

convolving such signal with a finite support function Ψ (x)
(named wavelet) and taking the Fourier transform at each
step of the convolution:

C(x, α) =
∫ ∞
−∞

f (x′)
1√
α
Ψ�
(

x′ − x
α

)
dx′ . (3)

Alternatively, the same operations can be interpreted as a
set of filtering operations in spectral space

C(x, α) =
1√
2π

∫ ∞
−∞

f̂ (k)
√
αΨ̂�(α k) expikx dk, (4)
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Fig. 1 Morlet wavelet and its Fourier transform (magnitude)
plotted for two different values of the parameter c0. The
parameter c0 can be used to adjust the ratio between the
errors ΔkH and Δk∇.

where Ψ̂ (k) is the Fourier transform of the function Ψ(x)
(i.e. the filter transfer function) and f̂ (k) is the spectrum of
f (x).1

Here the parameterα is used to dilate the support xw of
the wavelet function such that xw ∝ 1/k. By this approach,
the Heisenberg error relative to each spectral component
ΔkH/k is kept constant and the gradients error relative
to each spectral component equals Δk∇/k = (∂k/∂x)/k2,
which one may recognize as the adiabatic-change criteria
of the WKB theory [5]. Imposing the errors to be equal
Δk∇ = ΔkH results in c = (∂k/∂x)/k2 which in practice
sets a condition on the wavelet function used, depending
on how well the adiabatic-change criteria is satisfied in the
system under consideration.

The CWT is an implementation of the WT using
which uses arbitrary scales α; these wavelets do not form
an orthogonal basis, meaning that data at different loca-
tions and frequencies are correlated to each other.

2.2 Complex morlet wavelet
The Morlet wavelet is defined as a sinusoidal signal

multiplied by a Gaussian envelop. Plots of the Morlet
wavelet in real and spectral space are shown in Fig. 1. In
the following it’s complex analogue is used to sample the
signal for either its positive or negative k components:

Ψ (x) = exp(−x2 ± i c0 x) . (5)

The Full-Width Half Maximum FWHM of the Mor-
let wavelet power spectrum is ΔkH = 2

√
log(2). As the

spectrum is centered at k = c0, the spectral accuracy at
every wavelet scale is ΔkH/k ≈ 1.66/c0. The parameter
c0 can therefore be used to control the ratio between the
Heisenberg and the gradient error. Satisfying the WKB and
the eikonal wavenumber conditions requires kL � kxw =
c0 � 1, where L is the scale-length that one wants the
CWT to resolve for a given k.

Worth pointing out is that the Morlet wavelet resem-
bles very closely to the imaginary susceptibility arising

1Numerically, the latter approach is preferred in view of the numeri-
cal efficiency of the Fast Fourier Transform (FFT) algorithm O(N log N)
compared to a numerical convolution O(N2).

Fig. 2 Imaginary susceptibility arising from Electron Landau
Damping (ELD) for a Maxwellian plasma in real and
spectral domains for two different electron temperatures.

from Electron Landau Damping (ELD) for a Maxwellian
plasma χELD(x), shown in Fig. 2 [3]. This suggests that is
possible to interpret χELD(x) as a wavelet whose support
scales depending on the plasma temperature, thus select-
ing specific spectral k‖ components with which the waves
interact.

3. Simulation Results of an Alca-
tor C-Mod LHCD Discharge Using
LHEAF
Figure 3 shows the wave parallel electric field E‖ from

a LHEAF simulation of an Alcator C-Mod LHCD dis-
charge (B = 5.4 T, n̄e = 1.3 × 1020 m−3, ∼ 600 kW of net
power with launched n‖,ant = 1.9) both in phase [6] and
real space. In the plots, the arrows represents the trajectory
of the same ray-tracing calculation, and is intended to be
used as a guideline on how to interpret the full-wave result.

In real-space, one sees four waveguide rows inject-
ing RF power into the plasma from the low field side of
Alcator C-Mod cross-section. Once the waves propagate
through the SOL, they become quickly electrostatic and
propagate in the form of resonance cones, making small
angles with respect to the static magnetic field. After prop-
agating through the plasma, the waves undergo reflection
either at a cutoff layer or at the vacuum vessel walls. In
the vicinity of the locus of closest approach to the plasma
core, the waves resonance cones are observed to fann-out.
Finally, though week in amplitude, one can observe spiral-
like structures close to the center of the plasma which are
associated with the formation of caustics.

The phase-space plot shows the E‖ power spectrum
as a function of normalized wave phase parallel velocity
v‖/c = 1/n‖ and normalized minor radius ρ = r/a. In
this plot the wave fields are mostly confined in the re-
gion of velocity space lying between the slow-wave acces-
sibility condition v‖,acc (dashed black-white line) and the
3 vTe boundary (dashed red-black line), where the waves
are strongly damped due to ELD. Following the arrow, one
sees that the waves enter the separatrix with v‖/c ∼ 2 and
first downshift until they reach a point of minimum ap-
proach to the plasma core, which occurs in the vicinity of
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Fig. 3 Full-wave solution in phase (left) and real space (right) of an Alcator C-Mod LHCD discharge simulated in LHEAF.

the slow-fast wave confluence point. The waves then up-
shift as they propagate back towards the plasma edge, cross
the separatrix, reflect in the SOL and are finally damped
around 3 vTe .

Figure 4 shows the wavelet transform of the wave
fields in the core of the plasma, plotted as a function of n‖.
In this figure, the parameter c0 of the Morlet wavelet was
set to 20, as it results in a good tradeoff between spectral
and spatial resolution of the wavelet decomposition. The
spectral resolution is Δn‖/n‖ = 0.083 and is smaller than
separation among the n‖ frames of Fig. 4. For the Alcator
C-Mod wave frequency of 4.6 GHz, the spatial resolution
along the field lines is ∼ 20 cm/n‖. Considering a maxi-
mum field line pitch angle of ∼ 10 deg on the low field side
edge of the plasma, this corresponds to a cross-sectional
spatial resolution of ∼ 4 cm/n‖. Hence, for LH waves with
n‖ � 2, the spatial resolution is at least one order of mag-
nitude smaller than the plasma minor radius a = 22 cm.

Since the n‖ spectrum changes continuously along the
wave propagation, up or down shifting of the spectrum can
be studied by tracking the evolution of the wavelet power
spectrum peaks across different n‖ frames. The spectral
broadness instead can be estimated by counting for how
may n‖ frames does a feature persists at the same physical
location in the plasma.

To confirm the analysis carried out in Fig. 3, indeed
the waves which enter the low-field-side of the separatrix
with n‖ ≈ 2.0, first downshift (n‖ < 2.0) and subsequently

upshift (n‖ > 2.0). Also, the slow- fast- wave confluence
point at v‖,acc (dashed black-white line) shows which region
of the plasma is accessible for waves with a given n‖. The
waves which are circumscribed by the line are inaccessible.
Similarly, inside of the 3 vTe boundary (dashed red-black
line) the waves are strongly damped by ELD.

Broad spectral features associated with strong n‖ up-
shift are observed after the waves reflect off the inner
wall and the upper divertor region. Strong changes of
the n‖ spectrum in these region are expected, since the
reflecting surfaces are not aligned with the static mag-
netic field. This analysis also highlights the presence of
spiral-like structures near the center of the plasma which
are associated with the formation of caustics. Here, the
waves clearly spiral around or just outside of the mag-
netic axis, depending on their n‖ and the wave fields are
excluded from this region for all n‖ but in the vicinity of
n‖ = n‖,antR0/(R0 + a) ≈ 2.6 (here R0 = 0.67 cm and a =
0.24 cm). This is the “whispering gallery effect” which is
also observed in ray-tracing [7] and beam-tracing [8] sim-
ulations and is the result of LHEAF being a single toroidal
mode number simulation.

Certainly, like in ray-tracing calculations, one of the
driving mechanism behind the waves upshift are the vari-
ations in the poloidal and radial wave number which are
associated with a toroidal geometry [9] and a strongly
shaped plasma. Nonetheless, the spectral broadening ob-
served in LHEAF is larger than the one predicted by ray-
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Fig. 4 Logarithmic plots of a set of E‖ wavelet power spectra
equispaced in v‖/c = 1/n‖ and normalized to the same
absolute magnitude. The full-width half maximum of the
wavelet power spectrum is printed as an n‖ range on top
of each frame. White-black and red-black dashed lines
represents the accessibility and the 3 vTe boundaries, re-
spectively.

tracing codes [6] and full-wave effects have been proposed
as a mechanism that could explain such strong upshift. In
particular at the slow-fast wave confluence point, caustics
and cutoffs the WKB approximation is likely to be vio-
lated, since whenever the transverse dimension of the LH
resonance cone is comparable to the perpendicular wave-
length, wave diffraction becomes significant and the waves
are blurred both in real and spectral space [8].

4. Conclusions and Future Work
This paper introduces the use of CWT to decom-

pose LH full-wave fields into its constituent n‖ compo-
nents and obtain information about the waves local n‖ spec-
trum. Such information is critical to understand the full-
wave solution (wave propagation, absorption and current
drive performance), especially in the multipass-absorption
regime, where multiple waves with different wavelengths
are present simultaneously. Future work will be focused at
comparing the local parallel wavenumber information be-
tween the full-wave and the ray/beam-tracing simulations,
with the aim of investigating the role of full-wave effects
and the origin of the strong spectral broadening which is
observed in LHEAF simulations.
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