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Equilibrium flows and 3D effects can significantly impact plasma stability and energy confinement. Further,
in equilibria with flow, FLR effects can play an important role. Presently, there exist a number of codes which can
calculate MHD equilibria with a subset of the above effects, such as: the FLOW code [L. Guazzotto, R. Betti, J.
Manickam and S. Kaye, Phys. Plasmas 11(2), 604 (2004)], the PIES code [H.S. Greenside, A.H. Reiman and A.
Salas, J. Comput. Phys. 81(1), 102 (1989)], and the ItoGSEQ code [D. Raburn and A. Fukuyama, Phys. Plasmas
17(12), 122504 (2010)]. Using insights gained from these codes, the concept for a new code for calculation of 3D
MHD equilibria with flow and FLR effects has been developed; the code is called the Kyoto ITerative Equilibrium
Solver (KITES).
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1. Introduction
One of the simplest self-consistent models of plasma

equilibrium is obtained using the single-fluid magnetohy-
drodynamic (MHD) model, assuming no flow, under ax-
isymmetry. However, both nonsymmetric effects and flow
can significantly alter equilibrium: equilibrium flows can
produce transport barriers and profile pedestals [1, 2], and
nonsymmetric effects can produce magnetic islands and
stochastic regions. Further, in the presence of a profile
pedestal, small scale-length effects – such as finite Lar-
mor radius (FLR) effects – may be important. A review
of MHD equilibrium is provided in Sec. 2.

There are a number of codes which are capable of cal-
culating MHD equilibrium with a variety of the physical
effects mentioned above. In Sec. 3, we provide a review of
three selected codes: (1) the FLOW code, which can calcu-
late axisymmetric single-fluid equilibria with flow; (2) the
ItoGSEQ code, which can calculate axisymmetric reduced
two-fluid equilibria with flow in an inverse-aspect-ratio ex-
pansion; and, (3) the PIES code, which can calculate non-
symmetric single-fluid equilibria without flow.

We have begun development on a code for calculat-
ing nonsymmetric reduced two-fluid equilibria with flow,
known as the KITES (Kyoto ITerative Equilibrium Solver)
code. The concept for KITES is presented in Sec. 4. A
summary of the concept for KITES is presented in Sec. 5.

2. Review of MHD Equilibrium
Consider the following equations for the magnetohy-
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drodynamic (MHD) model of a plasma:

∇ · B = 0, (1)

∇ × B = μ0 j, (2)

j × B = ∇p + minu · ∇u + αgv
i ∇ ·Πgv

i , (3)

∇ · (nu) = 0, (4)

ue × B = ∇Φ − αHall∇pe/(en), (5)

ue ≡ u − αHall j/(en), (6)

u · ∇pi + γpi∇ · u = − 2
5α

hf
i γ∇ · qi, (7)

ue · ∇pe + γpe∇ · ue = − 2
5α

hf
e γ∇ · qe, (8)

where Πgv
i is the ion gyroviscous tensor, qi and qe are the

ion and electron heat fluxes, and the terms αHall, α
gv
i , αhf

i ,
and αhf

e are artificial coefficients which have been intro-
duced to provide control over various physical effects: in
the most realistic model, all should be set to unity. The
other symbols have their usual meaning [3]. The heat
fluxes and gyroviscosity tensor can be calculated using the
expressions given by Ramos [4].

Eqs. (7) and (8) are based on the standard MHD adi-
abatic model for closure, which is valid in the high col-
lisionality limit. An alternative is Grad’s guiding center
particle (GCP) model, which instead uses a kinetic model
for the dynamics of particles along the field lines [5, 6].

While we are interested in studying nonsymmetric
two-fluid MHD equilibria with flow under both the adia-
batic and GCP models, a short review of simpler cases is
in order. One of the simplest self-consistent models for de-
scribing plasma equilibrium is the single-fluid MHD model
(α... = 0) under axisymmetry (∂/∂φ = 0) with no bulk fluid
flow (u = 0). In this case, equilibrium is described by the

c© 2012 The Japan Society of Plasma
Science and Nuclear Fusion Research

2403108-1



Plasma and Fusion Research: Regular Articles Volume 7, 2403108 (2012)

well-known Grad-Shafranov equation [7]:

∇ ·
(
R−2∇ψ

)
= R−2I (dI/dψ) + μ0 (dp/dψ) , (9)

where R is the major radius, ψ is the poloidal magnetic
flux, and I is the poloidal current. Equilibrium depends
on the boundary conditions for ψ, as well as the two free
functions I(ψ) and p(ψ), which must be constant on each
flux surface.

Axisymmetric single-fluid equilibria with flow under
adiabatic closure (∂/∂φ = 0, α... = 0, u � 0) is governed
by a generalized Grad-Shafranov equation and a Bernoulli
equation [8]. In this case, equilibrium depends on the
boundary conditions forψ as well as five free functions; the
five free functions are related to the following quantities:
I, p, n, Φ, and Ψ , where Ψ is the stream function, which
measures the poloidal fluid flow [9]. There are a number of
important complications in this case. First, there may be a
density discontinuity where the poloidal flow changes from
sub- to super-poloidal sonic, known as the poloidal-sonic
discontinuity [2]. Additionally, the differential equation
governing equilibrium will typically become hyperbolic in
some small region [6,8,10], making numerical calculation
difficult. Two-fluid effects (αHall = 1, but other αs remain-
ing zero) modify the criterion for hyperbolicity, but both
elliptic and hyperbolic regions are still possible [11]. Un-
der the GCP model, however, for a low-beta plasma, the
system is always elliptic as long as the flow remains sub-
Alfvénic [6].

Ito and Nakajima have developed a formulation for
large aspect-ratio axisymmetric FLR reduced two-fluid
MHD equilibria with flow under adiabatic closure (∂/∂φ =
0, α... � 0, u � 0) [3, 12]. The formulation makes use of
an expansion in the inverse aspect-ratio ε with the order-
ing ρ/a ∼ ε, where ρ is the ion Larmor radius and a is the
plasma minor radius. In this formulation, through second
order in ε, equilibrium depends on five free functions of
the poloidal flux, which are related to the following quan-
tities: I, pe, pi, n, and Φ. A sixth free function, related
to Ψ , would be necessary through third order in ε. The
system is always elliptic, but, the poloidal-sonic disconti-
nuity instead becomes a singularity; the exact criteria for
the singularity is modified by two-fluid and FLR effects.

Now, consider nonsymmetric single-fluid equilibria
without flow (∂/∂φ � 0, α... = 0, u = 0). There is no guar-
antee of properly nested flux surfaces: magnetic islands
and stochastic regions are possible. Regardless, just like
the axisymmetric case, equilibrium is governed by bound-
ary conditions and just two free functions, one related to
the current and one related to the pressure. However, in-
stead of these being defined in terms of the poloidal flux
ψ, they are typically defined in terms of the full magnetic
field B, with each free function constant on each magnetic
field line.

Finally, consider the case of nonsymmetric single-
fluid MHD equilibria with flow (∂/∂φ � 0, α... = 0, u � 0).
Bondeson and Iacono have shown that, under the adiabatic

model, the system is always hyperbolic when there is flow
across the field lines. However, under GCP, the system is
always elliptic for a low-beta plasma as long as the flow
remains sub-Alfvénic [6].

3. Review of Selected Codes
There exist many codes for calculating MHD equilib-

ria in a variety of models. Here, we briefly review three
codes: (1) the FLOW code; (2) the ItoGSEQ code; and,
(3) the PIES code.

The FLOW code is capable of calculating axisym-
metric single-fluid MHD equilibria with bulk fluid flow
(∂/∂φ = 0, α... = 0, u � 0) [8]. FLOW handles the
poloidal-sonic discontinuity by examining the Bernoulli
equation explicitly and separating the computational do-
main in to sub- and super-poloidal sonic regions. The
code encounters some difficulties when dealing with large
poloidal flows in high-beta plasmas due to the presence of
a hyperbolic region; however, the authors report that reli-
able results can still typically be achieved.

The ItoGSEQ code can calculate equilibria under the
Ito-Nakajima formulation (∂/∂φ = 0, α... � 0, u � 0,
ε � 1) [3, 12]. The solver has provided preliminary study
of such equilibria, but, because of the linear expansion in
ε, the poloidal-sonic discontinuity becomes a singularity,
and the solver cannot be applied directly to trans-poloidal-
sonic flows. However, the code has been used to verify
the existence of equilibria with flow that do not have the
discontinuity.

The PIES code is capable of calculating single-fluid
MHD equilibria without flow in nonsymmetric systems
(∂/∂φ � 0, α... = 0, u = 0) [13]. The basic idea of the
algorithm will now be explained. Define λ:

λ ≡ j‖/B, (10)

where j‖ is the component of j parallel to B, and define λ*

to be the average of λ along a field line. Let ξ be a field line
label: it must be constant on each field line and must be
different between different field lines. PIES requires that
the boundary conditions on B and the functions λ∗(ξ) and
p(ξ) be specified. The PIES algorithm can be summarized
as follows:

1. Start with some guess for B over the computational
domain.

2. Calculate ξ over the computational domain by follow-
ing field lines and assigning some distinct value of ξ
to each line.

3. Calculate p over the computational domain using the
specified p(ξ).

4. Calculate the perpendicular current density j⊥ over
the computational domain using j⊥ = B × ∇p/B2.

5. Use the specified λ∗(ξ) to determine λ over the com-
putational domain such that: 〈λ〉ξ = λ∗ and B · ∇λ =
−∇ · j⊥.
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6. Calculate an updated guess for the magnetic field B(+)

such that: ∇ · B(+) = 0, ∇ × B(+) = λB + j⊥, and B(+)

satisfies the specified boundary conditions.
7. Using the updated guess for the magnetic field, re-

peat the above steps until the difference between suc-
cessive guesses for the magnetic field is sufficiently
small.

Steps 2 and 5 are very difficult, and PIES makes use of a
system of magnetic coordinates in order to effectively treat
magnetic islands and stochastic field lines. As a conse-
quence of these complexities, PIES has been considered to
be prohibitively slow for some applications.

Recently, an external Jacobian-free Newton-Krylov
(JFNK) wrapper has been developed to speed-up PIES
[14, 15]. Define the function F(B):

F(B) ≡ B(+) − B, (11)

where B is some discretized representation of B and B(+) is
the equivalent discretization of the B(+) calculated by PIES
for that B. Observe that, if F = 0, then, the correspond-
ing B must satisfy the equilibrium equations and specified
functions to some discretization-dependent numerical pre-
cision. Thus, the calculation of equilibrium is reduced to
finding a root of the function F. This is exactly what is
accomplished by the external wrapper.

4. Concept for New Code
4.1 Overview

We have developed an algorithm for calculating non-
symmetric MHD equilibria with flow and two-fluid effects
(∂/∂φ � 0, α... � 0, u � 0). We are writing a code to im-
plement this algorithm; the code is called KITES for Kyoto
ITerative Equilibrium Solver. The plan for KITES is to use
an algorithm similar to PIES with the external JFNK wrap-
per. Thus, we only need to set up a function F similar to
that used in PIES. However, before getting in to the algo-
rithm for calculating F, several comments are in order.

First, we must address the question of what param-
eters and free functions need to be specified in order for
equilibrium to be properly constrained. Based on the sim-
pler cases described in Sec. 2, we believe that it is appro-
priate to take as specified the field line averages of the fol-
lowing six quantities: λ, n, Te, Ti, Φ, and ν, where λ is
defined in Eq. (10) and ν is defined by:

ν ≡ u‖/B, (12)

where u‖ is the component of u parallel to B.
Second, for the quantities λ, n, Te, Ti, Φ, and ν, we

intend to break each up in to a field line average and field
line variation part. For example: λ = λ̃ + λ*, with 〈̃λ〉ξ = 0
and 〈λ*〉ξ = λ*. We take the functions λ*, n*, Te *, Ti *, Φ*,
and ν* to be given. We iteratively guess values for ñ, T̃e,
T̃i, Φ̃, and ν̃. Note that we do not need to guess λ̃, because
it can be easily calculated from the equilibrium equations.

Third, we take as unknown the plasma vector potential
Aplas under the Coulomb gauge (∇·Aplas = 0), with the vac-
uum vector potential Avac as given. We use a free boundary
for the plasma with a given vacuum vessel shape, and mag-
netic field lines intersecting the vacuum vessel wall will
have n and j zero on that line. Note that taking A as un-
known rather than B is is an important distinction from
PIES because, when used with JFNK, even if the updated
guess always has a divergence of zero, there is no guaran-
tee that the input will have a divergence of zero – this is
inconsequential for A but would cause difficulty with field
line following for B.

4.2 Major hurdles
There appear to be several major hurdles to the devel-

opment of the code:

1. Calculating ξ and the topology of the magnetic field;
2. Applying the free functions and solving the magnetic

differential equations;
3. Handling the poloidal-sonic discontinuity; and,
4. Validating the code in a case where a solution is

known to exist.

The first two hurdles are shared with PIES and the third
hurdle is shared with FLOW. Whereas PIES makes use of
magnetic coordinates to help address the first two hurdles,
we hope to use purely physical coordinates for KITES.
This will presumably make KITES slower than PIES when
handling good flux surfaces, but more robust overall.

The second hurdle involves solving problems of the
following form: find λ such that B·∇λ = −∇· j⊥ and 〈λ〉ξ =
λ∗. Rather than relying on the approach used in PIES, we
have searched for a tractable approach which does not rely
on magnetic coordinates. Because the operators B · ∇ and
〈...〉ξ are both linear, given some discretization method, the
problem can be cast in to the following form:

Mλ = b, (13)

for some matrix M and vector b, where λ indicates the dis-
cretized λ. M and b are informally given by the following
expressions:

M =

(
B · ∇
〈...〉ξ
)
, b =

(−∇ · j⊥
λ∗

)
, (14)

Because the matrix M is non-square, λ may be over-
determined. The least-squares solution to this problem is
determined by:

MTMλ = MTb, (15)

which can be solved for λ by a standard linear solver.
At present, it is unclear how the third hurdle will ap-

ply to KITES. In particular, it is unclear how the poloidal-
sonic discontinuity translates to nonsymmetric equilib-
rium. With the inclusion of two-fluid and FLR effects, it
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is hoped that the discontinuity will be replaced by a gra-
dient. Regardless, as demonstrated by the solver for the
Ito-Nakajima formulation, we do know that equilibria with
flow without the discontinuity are possible. We intend to
use such equilibria as a starting point for addressing the
discontinuity, if it remains.

Finally, consider the ellipticity of the system of equa-
tions. Although the inclusion of two-fluid effects may
modify the ellipticity of the system, it is not clear if there
will generally be solutions with flow across the field lines
for the given boundary conditions. We plan to use the code
to investigate the existence of solutions; however, before
doing that, we need to be able to verify the code when
including various physical effects. If necessary, we will
do this using the GCP model, which is known to typically
be elliptic without the two-fluid effects. If we are unable
to verify the code under the adiabatic model, we hope to
verify the code under GCP, then use the verified code to
investigate the existence of equilibria under the adiabatic
model.

4.3 Step-by-step algorithm
The algorithm for calculating F under the adiabatic

model is as follows:

1. Guess some Aplas, ñ, T̃e, T̃i, Φ̃, and ν̃.
2. Calculate A using: A = Avac + Aplas.
3. Calculate B using: B = ∇ × A.
4. Calculate j using: j =

[
∇ (∇ · A) − ∇2 A

]
/μ0.

5. Calculate ξ using field line following.
6. Calculate n, Te, Ti, Φ, and ν using the guessed field

line variation and the specified field line average.
7. Calculate u⊥ using B× Ohm’s law [Eq. (16)].
8. Calculate u and ue: u = u⊥+νB, ue = u−αHall j/(en).
9. Calculate an updated guess for ñ using conservation

of mass [∇ ·
(
ñ(+)u

)
= −∇ · (n∗u)] and 〈̃n(+)〉ξ = 0.

10. Calculate an updated guess for T̃e using the electron
equation of state [Eq. (17)] and 〈T̃ (+)

e 〉ξ = 0.
11. Calculate an updated guess for T̃i using the ion equa-

tion of state [Eq. (18)] and 〈T̃ (+)
i 〉ξ = 0.

12. Calculate an updated guess for Φ̃ using B· Ohm’s law
[B · ∇Φ̃(+) = −αHallB · ∇p̃e/(en)] and

〈
Φ̃(+)
〉
ξ
= 0.

13. Calculate a linearly updated guess for ν̃ using B· the
force balance equation [Eq. (19)] and

〈
ν̃(+)
〉
ξ
= 0.

14. Calculate an updated j⊥ using B× the force balance
equation [Eq. (20)].

15. Calculate an updated λ̃ using conservation of charge
[B · ∇λ̃(+) = −∇ · j(+)

⊥ ] and
〈̃
λ(+)
〉
ξ
= 0.

16. Calculate an updated j using: j(+) = j(+)
⊥ +(

λ∗ + λ̃(+)
)

B.
17. Calculate an updated guess for Aplas using the Biot-

Savart law on the computational boundary and a Pois-
son solver internally.

u⊥ = B × [∇Φ + αHall ( j × B − ∇pe) /(en)
]
/B2, (16)

ue · ∇
(
nT̃ (+)

e

)
+ γnT̃ (+)

e ∇ · ue = − 2
5γα

hf
e ∇ · qe

−ue · ∇ (nTe *) − γnTe *∇ · ue, (17)

u · ∇
(
nT̃ (+)

i

)
+ γnT̃ (+)

i ∇ · u = − 2
5γα

hf
i ∇ · qi

−u · ∇ (nTi *) − γnTi *∇ · u, (18)

minB ·
{
∇
[(
ν∗ + 1

2 ν̃
)

B2ν̃(+)
]
− u⊥ ×

[
∇ ×
(
ν̃(+)B

)]}

= minB ·
{
u⊥ × [∇ × (u⊥ + ν∗B)] − 1

2∇
[
u2
⊥ + ν

2
∗B

2
]}

−B · ∇p − αgv
i Π

gv
i , (19)

j(+)
⊥ = B ×

(
minu∇u + ∇p + αgv

i Π
gv
i

)
/B2. (20)

5. Summary
We have developed an algorithm for calculating non-

symmetric reduced two-fluid MHD equilibria with flow.
The algorithm is based on that used in the PIES code, but
has been modified and extended to allow for the additional
physics; in particular, the new algorithm uses a method
for solving the magnetic differential equation which does
not rely on magnetic coordinates. We expect that the code
can be verified using Grad’s guiding center particle (GCP)
model for closure, and we plan to use the code to investi-
gate equilibria under both the GCP and adiabatic models.
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