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Numerical Calculation of MHD Equilibria including Static
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Magnetohydrodynamics (MHD) equilibria including static magnetic islands for the reduced MHD equations
in a straight heliotron plasma are calculated. The equilibria are obtained as the solution of the coupled equations
of the constant pressure along each field line and the force balance. The former and the latter equations are solved
by means of a field line tracing method and a relaxation method, respectively. There exist two kinds of solutions.
One is the equilibrium of which the pressure profile is flat at the O-point and steep at the X-point. In this case,
the pressure gradient is discontinuous at the separatrix of the magnetic island. The other is the equilibrium of
which the pressure profile is flat at not only the O-point but also the X-point. In the case, the pressure gradient is
continuous at the separatrix.
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1. Introduction
Magnetic islands induced by resonant magnetic per-

turbations (RMP) are extensively studied in magnetically
confined fusion devices these days. Recent experimental
and theoretical works on magnetic islands are summarized
in Ref. [1]. In tokamaks, a lot of efforts are paid for the
control of the edge localized mode with the island gen-
eration by the application of the RMP. In heliotrons, the
growth and the decay of the static magnetic islands at fi-
nite beta are studied in the Large Helical Device (LHD)
as well. In the present work, we focus on the static mag-
netic island in the LHD configuration. In the LHD config-
uration, there exists a magnetic hill in the plasma column.
Therefore, resistive interchange modes can be destabilized
easily. Ichiguchi et al. [2,3] and Ishizawa et al. [4] showed
magnetic islands are also generated by the nonlinear evolu-
tion of the interchange modes. These studies indicate that
the magnetic islands induced by the RMP can interact with
the interchange modes.

We have studied the interaction between the static
magnetic islands generated by the RMP and the resistive
interchange modes by using the reduced magnetohydrody-
namics (MHD) equations [5] in straight heliotron plasmas.
In the previous work, a profile corresponding to nested
magnetic surfaces was employed for the equilibrium pres-
sure. In this case, interchange modes grow as in the case
without the islands. The island width is changed by the
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nonlinear saturation of the interchange modes [6, 7].
On the other hand, the equilibrium pressure profile

consistent with the topology of the static islands is gen-
erally deformed so as to have local flat structure at the is-
land region. The local flat structure is expected to affect the
growth of the interchange mode. For the study of the defor-
mation effect on the stability, equilibrium with the pressure
profile consistent with the static islands is needed. We have
obtained one of such MHD equilibria by utilizing a diffu-
sion equation parallel to the field line for the equilibrium
pressure calculation [8]. In this case, the resultant equi-
librium pressure profile is flat at both the O-point and the
X-point of the magnetic island. The equilibrium is useful
for the study of the effect of the local annual flat structure
of the pressure profile on the stability of the interchange
mode, but not for the pressure profile which is steep at the
X-point and flat at the O-point. Thus, we develop a nu-
merical scheme to calculate equilibria with such pressure
profile for the straight LHD configuration in this work.

2. Coupled Equations for Equilib-
rium
MHD equilibria including a static magnetic island

with the mode number of (m, n) = (1, 1) are studied, which
correspond to the reduced MHD equations in a straight he-
liotron configuration. Here, m and n are the poloidal and
toroidal mode numbers, respectively. The reduced MHD
equations are suitable for the analysis of such low mode
number physics, which are composed of the Ohm’s law,
the vorticity equation and the pressure equation for the
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poloidal flux Ψ (r, θ, z), the stream function Φ(r, θ, z) and
the plasma pressure P(r, θ, z). The normalized equations in
the cylindrical coordinates (r, θ, z) are given by

∂Ψ̃

∂t
= −B · ∇Φ̃ + 1

S
J̃z, (1)

dŨ
dt
= −B · ∇J̃z +

1
2ε2
∇Ω × ∇P · z + ν∇2

⊥Ũ (2)

and

∂P
∂t
= (z × ∇Φ̃) · ∇P + κ⊥∇2

⊥P + κ‖(B · ∇)(B · ∇)P.

(3)

Here, the magnetic field is expressed as

B(r, θ, z) = z + z × ∇ Ψ (r, θ, z), (4)

where z denotes the unit vector in the z direction. In this
study, Ψ (r, θ, z) is expressed as

Ψ (r, θ, z) = Ψsym(r) + Ψ ext
m,n(r, θ, z) + Ψ̃ (r, θ, z). (5)

Here, Ψsym(r), Ψ ext
m,n(r, θ, z) and Ψ̃ (r, θ, z) are the symmet-

ric part in the case without the static island, the external
poloidal flux which generates static magnetic islands with
mode number (m, n) and the change of the poloidal flux due
to the imposition of the islands, respectively. As shown in
Refs. [9–11], Ψ ext

m,n(r, θ, z) = Ψ̂ ext
m,n(r) cos(mθ − nz) is given

as the solution of no-current condition,

∇2
⊥Ψ

ext
m,n(r, θ, z) = 0 (6)

under the boundary conditions of

Ψ̂ ext
m,n(0) = 0 and Ψ̂ ext

m,n(1) = Ψb, (7)

where “∧” means the Fourier coefficients. Here, Ψb is the
value of the external poloidal flux at the plasma bound-
ary. In the case with (m, n) = (1, 1), Ψ̂ ext

1,1 (r) is given

by Ψ̂ ext
1,1 (r) = Ψbr. The current density in the z direction

J̃z and the vorticity in the z direction Ũ are expressed as
J̃z = ∇2⊥Ψ̃ and Ũ = ∇2⊥Φ̃, respectively, where ∇2⊥ is given
by ∇2⊥ = (1/r)(∂/∂r)(r∂/∂r)+ (1/r2)(∂2/∂θ2). The convec-
tive time derivative is given by

d
dt
=
∂

∂t
+ ∇Φ̃ × z · ∇. (8)

The quantity ∇Ω denotes the averaged field line curvature
and Ω is given by [12]

Ω(r) =
ε2Nt

l

(
r2

´ιsym + 2
∫

r´ιsymdr

)
, (9)

where ε, Nt and l are the inverse aspect ratio, the toroidal
period number and the pole number of the helical coils,
respectively. Here,´ι is the rotational transform defined as

´ι(r) =´ιsym(r) + ˜´ι(r), (10)

where´ιsym and ˜´ι are given by

´ιsym(r) =
1
r

dΨsym(r)

dr
and ˜´ι(r) =

1
r

d<Ψ̃>(r)
dr

(11)

where <Ψ̃> denotes the average part of Ψ̃ .
The quantities (r, z, t,Ψ ,Φ, P,U, Jz, ν, κ⊥, κ‖) are nor-

malized by (a, R0, τA, a2B0/R0, a2/τA, B2
0/2μ0, 1/τA,

B0/μ0R0, ρa2/τA, a2/τA, R2
0/τA), respectively. Here, B0,

a, 2πR0 and μ0 denote the magnetic field at the magnetic
axis, the plasma radius, the periodic length in z direction
and the vacuum permeability, respectively. The viscos-
ity and the perpendicular and the parallel heat conductiv-
ities are introduced with the coefficients ν, κ⊥ and κ‖, re-
spectively. The magnetic Reynold’s number S is defined
as S = τR/τA. Here, the Alfvén time τA and the resis-
tive diffusion time τR are given by τA = R0

√
μ0ρ/B0,

τR = μ0a2/η, where ρ and η are the mass density and the
resistivity, respectively.

The equilibrium corresponding to Eqs. (1)-(3) with
static islands needs to satisfy the following two equations.
One is the constraint that the pressure is constant along
field line with arbitrary topology,

B · ∇P = 0, (12)

which is obtained by assuming ∂/∂t = 0, Φ = 0 and κ‖ 	
κ⊥ in Eq. (3). The other is the force balance equation given
by

−B · ∇J̃z +
1

2ε2
∇Ω × ∇P · z = 0 (13)

which is obtained by ∂/∂t = 0 and Φ = 0 in Eq. (2). Equa-
tions (12) and (13) are coupled equations for Ψ (r, θ, z) and
P(r, θ, z).

3. Two-Step Calculation Method
We solve Eqs. (12) and (13) in two separate steps like

the schemes shown in Refs. [13–15]. In the first step,
Eq. (12) is solved for P with Ψ fixed. A field line trac-
ing method is employed in this step. We trace a field line
from the initial point of (r0, θ0, z0) and set the pressure as
P(r, θ, z) = Psym(r0) along the field line to make the pres-
sure constant. Here, Psym(r) is the pressure profile corre-
sponding to the nested magnetic surfaces without magnetic
islands. We fix θ0 as θ0 = θX which is the azimuthal an-
gle of the position of the X-point for given z0. By chang-
ing r0, we can trace every field line outside the separatrix.
The pressure inside the separatrix of the island is set to the
value at the X-point.

In the second step, Eq. (13) is solved for Ψ with P
fixed. The second step is a relaxation process given by
Eq. (1) and the equation of

∂Ũ
∂t
= −B · ∇J̃z +

1
2ε2
∇Ω × ∇P · z + ν∇2

⊥Ũ. (14)

To accelerate the relaxation process, we drop the convec-
tion term in Eq. (14). We regard the steady state as the
equilibrium state as in Ref. [13]. In order to judge the
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achievement of the steady state, we observe the growth
rates of the kinetic energy EK and the magnetic energy EM

given by

γK =
1

EK

dEK

dt
and γM =

1
EM

dEM

dt
, (15)

respectively, where

EK =
1
2

∫
|∇Φ̃ × z|2dV and

EM =
1
2

∫
|z × ∇Ψ̃ |2dV. (16)

When the conditions of

|γK| < εγ and |γM | < εγ, (17)

are satisfied simultaneously, we judge that the steady state
is achieved. Since we introduce a small value of 1/S for
the numerical stability in Eq. (1) of this step, we also check
the force balance condition of Eq. (13) by evaluating ΔFi

defined as

ΔFi =
|FB + FP|
|FB| + |FP| , (18)

where the subscript i denotes the number of iteration. Here
FB and FP are given by

FB =

∫
(−B · ∇J̃z)dV and

FP =

∫ (
1

2ε2
∇Ω × ∇P · z

)
dV, (19)

respectively.
The two steps described above are iterated until the

island width wi is converged, which is normalized by a.
When the change rate δwi of wi satisfies the condition,

|δwi| < εw, (20)

we judge that the MHD equilibrium is obtained, where δwi

is defined as

δwi =
wi − wi−1

wi−1
. (21)

4. Results
By means of the two-step method explained in Sec. 3,

MHD equilibria including static magnetic islands are ob-
tained in a straight heliotron plasma. We employ the mag-
netic configuration parameters of Nt = 10, l = 2 and
ε = 0.16, which correspond to the LHD configuration. We
vary the value of Ψb from 0 to 1.0 × 10−3 in this study. In
the case of positive Ψb, the X-point is located at θX = 0
and z = 0. Hence, we set θ0 = 0 and z0 = 0 in the first step.
The pressure profile Psym(r),

Psym(r) = β0(1 − r4)2 (22)

is used with β0 = 1.5%. Since we use Psym(r) of Eq. (22) as
the pressure at the initial point (r0, θ0, z0) at each iteration,

Fig. 1 Equilibrium pressure profile along the line connecting
(r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) for
Ψb = 1.0 × 10−3 and β0 = 1.5%. Blue lines indicate the
position of the separatrix of the island at θ = π. Green
lines indicate the position of the rational surface.

(a)

(b)

(c)

Fig. 2 Variation of (a) ΔFi, (b) δwi and (c) wi.

the profile at (r, θ0, z0) for any r, and therefore, the gradient
at the X-point is fixed over the whole iterations. In the
second step, dissipation parameters are set to be S = 102

and ν = 10−6. We employ εγ = 10−6 and εw = 10−4 as the
convergence parameters.

Figure 1 shows the resultant equilibrium pressure for
Ψb = 1.0 × 10−3. We obtain an equilibrium pressure pro-
file which is steep at the X-point and flat at the O-point
with the present scheme. Figure 2 shows the changes of
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Fig. 3 Plots of (a) contour of constant pressure and (b) magnetic
surfaces for Ψb = 10−3 and β0 = 1.5%.

Fig. 4 Dependence of equilibrium island width on Ψb.

ΔFi, δwi and wi in the iterations for several Ψb’s. In the
final states, ΔFi < 10−2 is satisfied as shown in Fig. 2 (a),
which indicates that the equilibrium is obtained in a good
accuracy. Figure 2 (b) shows that the island width is con-
verged in the finite number of iteration for every Ψb. The
converged equilibrium island width is larger than the vac-
uum width w0 as shown in Fig. 2 (c). The contour of the
constant pressure coincides with the magnetic surfaces as
shown in Fig. 3. That is, the equilibrium pressure has the
same structure as that of the island. Figure 4 shows the
dependence of the island width on Ψb. The island width
is increased by the finite beta. The increment is increased
with Ψb.

5. Discussions
In this work, the obtained equilibrium pressure profile

is steep at the X-point and flat at the O-point as shown in
Fig. 1. On the other hand, in the previous work [8], the

Fig. 5 Pressure profiles along the line connecting (r = 1, θ =
0, z = 0) and (r = 1, θ = π, z = 0) for Ψb = 1.0 × 10−3

and β0 = 1.5%. Purple and red lines show the assumed
profile of P(r0, θ0 = π, z0 = 0) with continuous gradient
at the separatrix and the profile obtained by the tracing
field lines starting from (r0, θ0 = π, z0 = 0), respectively.
Blue lines indicate the position of separatrix of island at
θ = π. Green lines indicate the position of the rational
surface.

equilibrium pressure profile which is flat at not only the O-
point but also the X-point is obtained. The difference in the
pressure gradient at the X-point is attributed to the continu-
ity of the pressure gradient across the separatrix except the
X-point. In this work, the pressure gradient is discontin-
uous across the separatrix as shown in Fig. 1 because we
employ the field line tracing method explained in Sec. 3.
This discontinuity is inevitable for the existence of the fi-
nite gradient at the X-point. In the previous work [8], in
order to satisfy Eq. (12), we calculate the steady state of
the diffusion equation parallel to the field line,

∂P
∂t
= κ‖(B · ∇)(B · ∇)P. (23)

In the right hand side of Eq. (23), the derivatives in r and
θ directions are included. The continuity of the deriva-
tives are naturally guaranteed in the numerical calculation.
Therefore, the pressure gradient is continuous even at the
separatrix [8]. This continuity makes the profile at the X-
point flat.

This situation can be confirmed also with the present
field line tracing scheme. We start the field line tracing
from the initial point of (r0, θ0 = π, z0 = 0) instead of
(r0, θ0 = 0, z0 = 0) used in the calculation for the pres-
sure profile with steep gradient at the X-point. We assume
Psym(r) which is plotted with the purple solid line in the
region of −1 ≤ r ≤ 0 at θ = π in Fig. 5 instead of Eq. (22).
The gradient of this profile is continuous at the separatrix.
Then, we obtain the profile plotted with the red solid line
in the region of 0 ≤ r ≤ 1 at θ = 0 in Fig. 5 as the result
of the field line tracing method. This result shows that the
gradient at the X-point is necessary zero for the continuous
gradient at the separatrix. This result also means that the
present field line tracing method can generate the equilib-
rium solutions with which the pressure profile is flat at the
X-point as well. Actually, the result obtained in Ref. [8] is
directly confirmed with this method.
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6. Conclusions
A numerical scheme to calculate MHD equilibria in-

cluding static magnetic islands for the reduced MHD equa-
tions in a straight heliotron plasma is developed. The
scheme is composed of the two steps solving the pressure
and the poloidal flux. The original point of the scheme is
in the field line tracing method in the pressure calculation.
We calculate the pressure along a field line by replacing
with a fixed value at a given azimuthal angle. By setting
the azimuthal angle as that including the X-point, θX, we
obtain an equilibrium with a finite pressure gradient at the
X-point. The resultant equilibrium shows that the island
width is increased by the finite beta value.

It is also found that there exist another kind of solu-
tion with a locally flat pressure profile at the X-point. Thus,
there exist two kinds of equilibrium solutions depending on
the gradient at the X-point, finite or zero. The difference
of the equilibria is related to the continuity of the pressure
gradient at the separatrix of the island except the X-point.
The gradient at the X-point can be finite in the case where a
discontinuous pressure gradient is allowed, while the gra-
dient at the X-point must be zero in the case where only
a continuous pressure gradient is allowed. In the former
case, the solution is determined uniquely if the radial pres-
sure profile at θ = θX is specified. Since the pressure gradi-
ent is discontinuous at the separatrix, the second derivative
of the radial pressure profile is infinite. On the other hand,
in the latter case, the second derivative is finite. By round-
ing the radial pressure profile at the separatrix in the for-
mer solution or giving a finite second derivative to the for-
mer profile, we can obtain the latter solution. In this case,
there exist various solutions depending on the shape of the
roundness or the value of the second derivative. Therefore,
the former solution can be considered as a special case of
the latter case and the two solutions may be considered as
a bifurcation. In both cases, it is assumed that the pressure
is flat inside the separatrix in the present scheme. If a pres-
sure profile corresponding to the magnetic surfaces inside
the separatrix is incorporated, the freedom of the solution
is increased.

It is interesting to obtain an equilibrium with a
stochastic magnetic field by multi-helicity islands. How-
ever, the scheme developed here cannot be applied to the
calculation of the equilibrium including a stochastic re-

gion. In the scheme, we fix a radial pressure profile at a
given azimuthal position so that the solution should have
the profile at the position. This treatment is possible only
for the cases with radially separated islands. In the stochas-
tic case, it is impossible to predict the pressure profile to be
fixed at any azimuthal position before the calculation.

The obtained result in the present work is utilized in
the stability analysis of the interchange mode in the equi-
libria with the magnetic islands. It is already known that
annular flat structure around the resonant surface in the
pressure profile has a stabilizing contribution on the inter-
change mode [16]. The resultant equilibria in the present
work have a steep pressure gradient at the X-point. Thus, it
is expected that the stabilizing contribution is smaller than
that in the annular flat structure case. The quantitative re-
sults of the linear stability and the nonlinear evolution will
be discussed in another paper [17].
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