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The BIA (Binary Interaction Approximation) formulation in the presence of neutralizing immovable back-
ground ion is presented for analysis of multiple electron motion. Such a BIA scheme is applied to electrons in
plasmas. A test calculation shows that 1) the plasma oscillation and its frequency are successfully detected, 2) the
CPU time for the BIA are less than 1.5 sec and 1 hour for two and three dimensional analysis, while 127 sec and
13 hours for the direct integration method (DIM) by using a Runge-Kutta-Fehlberg integrator with an absolute
error tolerance of 10−16, and 3) the number of time steps for the DIM, in such a case, are as many as 5.8 × 104

and 3.6 × 106, while those for the BIA are only 256 and 512.
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1. Introduction
We have proposed the Binary Interaction Approxima-

tion (BIA) scheme [1–3] to N-body problems. The BIA
scheme views an N-body problem as the superposition of

NC2 two-body problems [1]. One of the most fundamental
phenomena occurring in plasmas is the plasma oscillation.
Equation of motion is given as

mi
dui
dt
=

Zie2

4πε0

N∑

j�i

Z j
ri − r j∣∣∣ri − r j

∣∣∣3
. (1)

For N � 1, it is practically impossible for the large number
of particles, since the number of force calculations on the
right-hand side of Eq. (1) is in proportion to N2. Moreover,
the number of time steps tends to increase with increasing
number of particles N, so the total CPU time should scale
as N2.3−3.

The efficient, fast algorithms to calculate inter-particle
forces include the tree method [4, 5], the fast multipole
expansion method (FMM), and the particle-mesh Ewalt
(PPPM) method [6]. Efforts have been made to use paral-
lel computers and/or to develop special-purpose hardware
to calculate interparticle forces, e.g., the GRAvity PipE
(GRAPE) project [7].

2. Original BIA Scheme
Let us give a brief review on the original BIA scheme

proposed by the authors [1]. First choose a particle pair
(i, j) from N particles as shown in Fig. 1. There are NC2 =
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Fig. 1 An N-body system.

N (N + 1) /2 combinations. The equation of motion for
this case is:

μi j
dgi j

dt
=

ZiZ je2

4πε0

ri j

r3
i j

, (2)

where ri j = ri − r j, gi j = ui − u j, and μi j is the reduce mass.
Since the exact solution to two-body problem

is known, for any time interval Δt the solution,
ri j (Δt) and gi j (Δt) are easily found from the initial con-
ditions of ri j(0) and gi j(0). Once the solutions to all the
two-body systems have been found, changes in position
and velocity of individual particle during given time inter-
val Δt is calculated as follows:

miΔri = miuiΔt +
N∑

j�i

μi j

(
Δri j − gi jΔt

)
, (3)
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Fig. 2 Relative motion for particle pair (i, j). Scattering center is
at the origin. The change in position of the particle with
a mass μi j is Δri j. If no interaction occurs, the change in
position is gi jΔt during a time interval of Δt.

miΔui =
N∑

j�i

μi jΔgi j. (4)

Equation (4) for the velocity, i.e. momentum changes en-
sures the momentum conservation of the entire system. It
should be noted that, unlike the changes in velocity Δui,
changes in position Δri due to particle j is not simple sum-
mation over Δri j. As shown in, and explained in the cap-
tion of Fig. 2, the subtraction by gi jΔt from total change in
position Δri j gives change in position due solely to the in-
teraction between the pair (i, j). In the limitΔt → 0, Eq. (3)
reduces to the definition of velocity, and Eq. (4) reduces to
the original equation of motion, as given in Eq. (1).

3. BIA Formulation for Electrons in
the Presence of Background Ions
Suppose N electrons are in the presence of uniformly

distributed immovable background ions. In such a case,
the electric field and the electrostatic potential due to the
ions are given by

E (r) =
n0er
3ε0
, ϕ (r) = −n0er2

6ε0
, (5)

where n0 stands for the ion number density. Thus the equa-
tion of motion for i-th electron is as follows:

mi
dui
dt
= −n0e2

3ε0
ri +

e2

4πε0

N∑

j�i

ri − r j∣∣∣ri − r j

∣∣∣3
. (6)

In this case, let us regard the background ions as the zero-
th particle with infinite mass, then the relative system be-
tween i-th electron and the bulk of the background ions
becomes

d2ri

dt2
+

n0e2

3miε0
ri = 0, (7)

since μi0 =≡ mi × ∞/(mi +∞) = mi and gi0 = ui − 0 = ui.
Thus, the original BIA scheme, given in Eqs. (3) and (4),
becomes as

miΔri = miΔri0 +

N∑

j=1
j�i

μi j

(
Δri j − gi jΔt

)
, (8)

miΔui = miΔgi0 +

N∑

j=1
j�i

μi jΔgi j. (9)

The first terms, both in Eq. (8) and Eq. (9), represent the re-
spective changes due to plasma oscillation with an electron

plasma frequency Π ≡
√

n0e2
/
3ε0me given by

Δri = ri (cosΠΔt − 1) + ui
sinΠΔt
Π
,

Δui = ui (cosΠΔt − 1) − riΠ sinΠΔt,

during a time interval of Δt.

4. Test Calculation
In this test calculation section, we will adopt the nor-

malization system, as in Ref. [1], where lengths are nor-
malized by an average interparticle separation Δ� = n−1/3

0 ,
and velocities by a relative thermal speed between elec-
trons, i.e. gee

th =
√

2T /μee =
√

2veth.

4.1 Two dimensional analysis
Two-dimensional analysis is made with the BIA

scheme for the number of particles is 122, 121 of which
are electrons. An immovable background ion is centered
at the origin; the initial electron distribution is uniform in
the phase space (r, u).

The trajectories, in configuration and velocity spaces,
of an electron are shown in Figs. 3 and 4, in which blue
points are obtained by the BIA scheme, while a red line by
the DIM (RKF65). Note that, in Fig. 4, there are several
DIM line segments in red, on which only one or two BIA
points are depicted. Since the time interval for adjacent
BIA points is constant, the electron under consideration
feels a strong force, i.e. the impulse, due to other electrons
along the line segments.

The CPU time for the BIA in this calculation is less
than 1.5 sec, while 127 sec for the DIM by using a Runge-
Kutta-Fehlberg integrator [8] with an absolute error toler-
ance of 10−16. It should be noted that the number of time
steps for the DIM, in this case, is as many as 1.1 millions,
while that for the BIA is only 256. In spite of much smaller
number of time steps, as typically shown in Fig. 4, the com-
plicated change in velocity with time, or the acceleration,
is typically reproduced well with the BIA scheme.

Figure 5 depicts the time evolution of energy of the
system: kinetic energy K in red, potential energy U in
green, and the total energy E = K + U in blue of the en-
tire system. This figure shows the energy conservation,
E = K + U = const, and the normalized period for en-
ergy K and U is around 280.0, twice of which gives the
560.0. The corresponding theoretical plasma oscillation in
this case is
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Fig. 3 Two-dimensional electron trajectory initially at rest in the
configuration space for a 122-body system. A red line
represents that by using the direct integration method:
DIM. Blue circles indicate the trajectory obtained by us-
ing the BIA scheme.

Fig. 4 Two-dimensional electron trajectory in the velocity space
for a 122-body system. A red line represents that by using
the direct integration method: DIM. Blue circles indicate
the trajectory obtained by using the BIA scheme.

T = 2π/Π = 560.5, (10)

which is close to that obtained by using the BIA analysis.

4.2 Three dimensional analysis
Similar calculation in three dimensions is made for

the number of particles is 344, 343 of which are electrons.
An immovable neutralizing positive point charge (ion), in
this case, is at the origin. The electrons are randomly dis-
tributed around the positive charge initially with an average
interparticle separation Δ� = n−1/3

0 and velocity distribu-
tion is also uniform around their thermal speed.

Figure 6 depicts the time evolution of x-coordinate of
an electron, in which green points are obtained by the BIA
scheme, while a red line by the DIM, i.e. RKF65. The
position of the electron by using the BIA begins to deviate
from that by the DIM after around the normalized time of
3.8, until then the agreement is excellent.

Fig. 5 Time dependent energy for a two N-body system, calcu-
lated by using the BIA scheme. K and U stand for the
kinetic and potential energy of the system, respectively.

Fig. 6 Comparison of the time-dependent x-coordinate of an
electron in the configuration space for a 344-body sys-
tem in three-dimensions. A red line represents that by
using the direct integration method: DIM. Green points
indicate that obtained by using the BIA scheme.

Using FFT analysis on the electrostatic potential ϕ(r0)
at a point r0, a spectrum peak is found at a normalized pe-
riod of 1.28, which is close to the period for the normalized
plasma frequency of 1.35, as marked with a red square in
Fig. 7. It should be noted that, these calculations take the
CPU time of 13 hours for the DIM and only 1 hour for the
BIA.

5. Summary
The BIA (Binary Interaction Approximation) formu-

lation, in the presence of neutralizing immovable back-
ground ion, is presented for analysis of multiple electron
motion. Such a BIA scheme is applied to electrons in plas-
mas. The plasma oscillation and its frequency are success-
fully detected with much less CPU time than a conven-
tional method, i.e. a Runge-Kutta-Fehlberg method with
an absolute error tolerance of 10−16.

Test calculations show, for two- and three-
dimensional cases, that 1) the normalized period of
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Fig. 7 FFT analysis on a scalar potential ϕ(r0) at a point r0

for the same case shown in Fig. 5. A spectrum peak is
found at a normalized frequency 1.28, as indicated by red
square, close to the normalized plasma frequency of 1.35
as marked with a red square.

the plasma oscillation for two-/three-dimensional cases
are successfully detected to be 560.0/1.28 when its
theoretical value is 560.5/1.31, 2) test calculations for
two/three dimensional case show that the CPU time for the
BIA is less than 1.5 sec/1 hour, while 127 sec/13 hours for
the DIM by using a Runge-Kutta-Fehlberg integrator with
an absolute error tolerance of 10−16, and 3) the number
of time steps for the DIM, in such a case, is as many as
around 5.8 × 104/3.6 × 106, while that for the BIA is only
256/512.
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Appendix A. Derivation of BIA Scheme
Since the force terms in Eq. (1) are the summation of

those in Eq. (2), we have

fi =

N∑

j�i

fi j

(
ri, r j

)
. (A.1)

The exact change miΔui in momentum of the particle-i dur-
ing a time-interval Δt is formally given as

miΔui =

∫ t+Δt

t
fi

(
ri (t) , r j (t)

)
dt

=

N∑

j�i

∫ t+Δt

t
fi j

(
ri (t) , r j (t)

)
dt.

(A.2)

Since, in the framework of the BIA via Eq. (2), the relative
force fi j(t) changes the relative momentum μi jgi j (t),

miΔui �
N∑

j�i

μi j

[
gi j (t + Δt) − gi j (t)

]
=

N∑

j�i

μi jΔgi j, (A.3)

which is Eq. (4).
Similarly, the exact change Δri in position of the

particle-i during Δt is formally given by

Δri =

∫ t+Δt

t
ui
(
t′
)

dt′ =
∫ t+Δt

t

[
ui (t) + Δui

(
t′
)]

dt′

= ui (t)Δt +
∫ t+Δt

t
dt′
∫ t′

t

dui(t′′)
dt′′

dt′′,

(A.4)

from which, with the BIA scheme, we have

miΔri � miui (t)Δt +
∫ t+Δt

t
dt′
∫ t′

t

N∑

j�i

μi j
dgi j (t′′)

dt′′
dt′′

= miui (t)Δt +
∫ t+Δt

t
dt′

N∑

j�i

μi j

[
gi j
(
t′
)−gi j (t)

]
(A.5)

= miui (t)Δt +
N∑

j�i

μi j

[
Δri j − gi j (t)Δt

]
,

which is Eq. (3).
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