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Relativistic particle motion in a non-uniform linearly polarized high intensity laser field is analyzed by
using the noncanonical Lie perturbation method, which is based on the perturbation theory of the phase space
Lagrangian. By introducing the smallness parameter ε as the ratio between the excursion length l and the scale
length of the laser field amplitude L, the relativistic ponderomotive force and particle motion are derived up to the
second order with respect to ε, which correspond to the nonlocal extension of the conventional ponderomotive
force. Specifically, the particle is found to exhibit a betatron-like oscillation with long period characterized by
the curvature of the laser field amplitude.
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1. Introduction
Recently, the intensity of ultra-short high power lasers

has reached the range of 1022 W/cm2. In this regime, elec-
trons irradiated by such lasers exhibit highly relativistic
characteristics. These high intensity lasers have opened up
various applications such as high-intensity X-ray/neutron
sources, compact accelerators, and fast ignition-based
laser fusion. In the near future, higher intensities of
1023-26 W/cm2 will be achieved, enabling the exploration
of an entirely new regime where new scientific discoveries
are anticipated [1, 2]. To realize such high intensities, the
reduction of the pulse width and/or the spot size is neces-
sary. In such spatially localized laser fields, the pondero-
motive force (light pressure) inevitably exists and plays an
important role in the particle dynamics [3, 4].

The relativistic ponderomotive force, which is propor-
tional to the field gradient, has been investigated by ap-
plying the averaging method to the equation of motion by
introducing the smallness parameter ε (see Sec. 2). How-
ever, as the laser field is tightly focused, higher order per-
turbations such as the spatial curvature become important.
Namely, in the non-uniform field, in addition to the force
that simply ejects charged particles from the strong field
region, particles experience an additional force originating
from the curvature of the field. Such a higher-order force
may be used to confine particles by carefully controlling
the laser field pattern.

In order to investigate particle motion in complicated
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electromagnetic fields, we have introduced the noncanoni-
cal Lie perturbation method based on the phase space La-
grangian [5–7] and derived the ponderomotive force up to
the first order of ε [8]. The method is found to be effi-
cient and powerful in determining the particle motion sys-
tematically while maintaining the Hamiltonian structure.
Motivated by this study, here, we extend the analysis to the
higher order particle dynamics, including curvature effects.

We briefly describe the noncanonical Lie perturbation
theory in Sec. 2 and apply the method to the orbit analysis
in Sec. 3. A summary is given in Sec. 4.

2. Noncanonical Lie Transformation
We consider the motion of a particle with charge q

in vacuum irradiated by a linearly polarized high-intensity
laser field. The field is assumed to propagate in the z-
direction and to be localized in the transverse x- and y-
directions. We introduce a smallness parameter, ε ∼ l/L,
where l and L (≡ (

∂x log |a|)−1 ∼
(
∂y log |a|

)−1
) are the

transverse excursion length of particle motion in the uni-
form laser field and the transverse scale length of the laser
field amplitude, respectively. Here, we normalize the vec-
tor potential of the laser field A as a ≡ qA/mc2, where m
is the rest mass of the particle and c is the speed of light.
We express a as

a(x, y, η) = ax(x, y, η)êx + εaz(η)êz, (1)

where ax(x, y, η) ≡ a0x(x, y) sin η, az(η) ≡ a0z cos η, η ≡
ωt − kzz, and êx and êz are unit vectors in the x- and z-
directions, respectively. Note that although az is necessary
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to satisfy the Maxwell equations, its contribution is of the
order of ε. As discussed in Sec. 3, az is found to affect not
the secular motion but the oscillatory motion of the particle
in the first order of ε. It is also noted that az affects second
order secular motion but, for simplicity, we neglect it in the
analysis presented in Sec. 3.3.

We expand the amplitude of the vector potential
around the initial particle position (x, y, z) = (x0, y0, 0) as

a0x (x⊥) = a0x0 + εx̃⊥ · ∂x⊥a0x (x⊥0)

+
ε2

2

[
x̃2∂2

xa0x (x⊥0) + ỹ2∂2
ya0x (x⊥0)

]
+ε2 x̃ỹ∂x∂ya0x (x⊥0) +�

(
ε3

)
, (2)

where a0x0 ≡ a0x(x⊥0), x̃⊥ ≡ x⊥ − x⊥0, and ∂x⊥a0x (x⊥0) =
∂a0x (x⊥) /∂x⊥|x⊥=x⊥0 .

The perturbation theory of the phase space Lagrangian
applied here employs noncanonical variables and the Lie
transformation method. We introduce the extended phase
space expressed by canonical variables as zμ = (t; q, pc) =
(t; qx, qy, qz, pcx, pcy, pcz), where the time t is an indepen-
dent variable. The corresponding covariant vector is given
by γμ = (−h; pc, 0), where h is the relativistic Hamiltonian
expressed as

h(q, pc, t) =
√

m2c4 + c2 (
pc − mca

)2. (3)

In this paper, we use Latin indices that run from 1 to 6,
whereas Greek indices run from 0 to 6. Using this notation,
the variational principle written in terms of the Lagrangian
L, δ

∫
Ldt = 0, is expressed as δ

∫
γμdzμ = 0. We call

γ̂ ≡ γμdzμ a fundamental 1-form. The equation of motion
is derived from the variational principle as

dzi

dz0 = Ji j
(
∂γ j

∂z0 −
∂γ0

∂z j

)
, (4)

where Ji j is the Poisson tensor defined as the inverse matrix
of the Lagrange tensor, ωi j ≡ ∂iγ j − ∂ jγi.

Here, we transform the canonical coordinate to that
suitable for the analysis. Since the 1-form, γμdzμ, is a
scalar quantity, the general transformation law from γμ to
the new covariant vector Γμ under an arbitrary coordinate
transformation zμ → Zμ can be obtained from the relation
γμdzμ = ΓμdZμ. As a preparatory transformation, we first
introduce a noncanonical coordinate

zμ = (η; x, y, z, px, py, pη). (5)

Here, p = pc − mca is the mechanical momentum, x =
q, and pη ≡ pz − γmc, where γ is the relativistic factor.
Since pη is the invariant of motion in a uniform field, the
orbit analysis becomes easier by taking pη as one of the
coordinate variables. The corresponding covariant vector
is then calculated as

γμ = (−K; px+mcax(x⊥, η), py, pη+εmcaz(η), 0, 0, 0), (6)

where K = −
(
2kpη

)−1 [
m2c2 + p2⊥ + p2

η

]
is the new Hamil-

tonian. Note that the field a does not explicitly appear
in the new Hamiltonian but in the first component of γμ,
which simplifies the perturbation analysis.

In the Lie perturbation method, we consider a
near-identity transformation of the order ε, zμ → z′μ =
exp

(
εL(1)

)
zμ, under which the corresponding covariant

vector is transformed as γμ → γ′μ = exp
(
−εL(1)

)
γμ + ∂μS .

Here, S is the gauge function and the operator L is defined
to act as L f = gμ∂μ f for a scalar function f and

(
Lξ̂

)
μ
=

gν
(
∂νξμ − ∂μξν

)
for a 1-form ξ̂, where gμ is the Lie gen-

erator of the transformation. By collecting all-order trans-
formations as γ′μ = · · · exp

(
−ε2L(2)

)
exp

(
−εL(1)

)
γμ + ∂μS ,

the nth-order transformed covariant vector becomes γ′(0)
μ =

γ(0)
μ and γ′(n)

μ = ∂μS (n) − L(n)γ(0)
μ + C(n)

μ for n ≥ 1, where
C(n)
μ is a component of the 1-form calculated from results

of lower-order calculations. We choose the Lie generator
and the gauge function to simplify the new 1-form, γ̂′. In
the analysis presented in Sec. 3, we take a Lie generator
that leads to z′0 = z0 and Γ′(n)

i = 0 for n ≥ 1 and use the
restriction for S to avoid secularities [5].

3. Orbit Analysis in Laser Fields
In the following, a 1-form of the unperturbed

oscillation-center coordinate is derived in Sec. 3.1. Then,
on the basis of the oscillation-center 1-form, the particle
orbits of the first- and second-order with respect to ε are
derived in Sec. 3.2 and Sec. 3.3, respectively.

3.1 One-form for the oscillation-center coor-
dinate

In the coordinate described by Eq. (5), unperturbed
particle motion zi(0) is obtained by solving the zeroth-order
equations of motion given by Eq. (4) as

x(0) =
a0x0

kzζ0
(cos η − 1) + x0, (7)

y(0) = y0, (8)

z(0) =
1

2kzζ
2
0

⎡⎢⎢⎢⎢⎣a2
0x0

2

(
η − 1

2
sin 2η

)
+

(
1 − ζ2

0

)
η

⎤⎥⎥⎥⎥⎦ , (9)

p(0)
x = −mca0x0 sin η, (10)

p(0)
y = 0, (11)

p(0)
η = pη0, (12)

under the initial condition of (x, p, pη) = (x⊥0, 0, 0, 0, pη0)
and pz = pz0 at η = 0. Here, we defined ζ0 as pη0 ≡
−mcζ0. In this notation, ζ0 = 1 when the initial momentum
of the charged particle is zero, i.e., pz0 = 0. The particle
exhibits the well-known figure-eight orbit in the x-z plane
whose oscillation center drifts in the z-direction [9]. The
excursion length l is obtained from Eq. (7) as l = a0x0/kzζ0.

Next, to investigate secular motion, we transform
the coordinate zμ (Eq. (5)) to that of the oscillation
center of the zeroth-order oscillatory motion, Zμ =

(η; X, Y, Z,Px, Py, pη). The old and new coordinates are re-
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lated as follows:

x = X + l cos η, (13)

y = Y, (14)

z = Z − a0x0

8ζ0
l sin 2η, (15)

px = Px − mca0x0 sin η, (16)

py = Py, (17)

pη = pη. (18)

Then, the new covariant vector is obtained as

Γμ = (−κ; Px + mc(ax(X⊥, η) − ax0(η)),

Py, pη + εmcaz(η), 0, 0, 0), (19)

where ax0(η) ≡ ax(X⊥0, η). Here, κ is the new Hamiltonian
calculated using the relations Eqs. (13)-(18), which yields

κ = K + l
[
Px + mc (ax(X⊥, η) − ax0(η))

]
sin η

+
a0x0

4ζ0
l
[
pη + εmcaz(η)

]
cos 2η. (20)

The old Hamiltonian K is now written in terms
of new coordinate variables P⊥, pη and η as K =
−

[
(mc)2 + (Px − mcax0(η))2 + P2

y + p2
η

]
/2kz pη.

For the zeroth order orbit, Z(0)i = (X(0), Y (0), Z(0), P(0)
x ,

P(0)
y , p

(0)
η ), the equations of motion that show the same

structure as the canonical Hamilton equations are given by

dX(0)

dη
= − P(0)

x

kz p(0)
η

+
a0x0

kz

⎛⎜⎜⎜⎜⎜⎝ mc

p(0)
η

+
1
ζ0

⎞⎟⎟⎟⎟⎟⎠ sin η, (21)

dY (0)

dη
= − P(0)

y

kx p(0)
η

, (22)

dZ(0)

dη
= −

⎛⎜⎜⎜⎜⎜⎝ K

p(0)
η

+
1
kz

⎞⎟⎟⎟⎟⎟⎠ + a0x0

4ζ0
l cos 2η, (23)

dP(0)
⊥

dη
= 0, (24)

dp(0)
η

dη
= 0. (25)

Here, the Hamiltonian K retains its functional form but is
written in terms of variables Z(0)i. Then, the zeroth-order
trajectory is obtained as

Z(0)i =

⎛⎜⎜⎜⎜⎝−l + x0, y0,
1

2kzζ
2
0

⎡⎢⎢⎢⎢⎣a2
0x0

2
+

(
1 − ζ2

0

)⎤⎥⎥⎥⎥⎦ η, 0, 0, pη0
⎞⎟⎟⎟⎟⎠ ,
(26)

which is consistent with that given by Eqs. (7)-(12).

3.2 First-order particle orbit
To analyze first-order motion, we perform a near-

identity Lie transformation from the oscillation-center co-
ordinate Zμ to a new one, Z′μ = (η; X′, Y′, Z′, P′x, P′y, p′η).
In the first order, C(1)

μ is obtained as C(1)
μ = Γ

(1)
μ . Then, the

new first-order covariant vector is obtained as

Γ′(1)
μ =

(
V (0)μΓ

(1)
μ ; 0, 0

)
, (27)

V (0)μΓ
(1)
μ =

mca2
0x0

2kz

mc
p′η

[
X′ − x0 + Y′ − y0

L

]
. (28)

Here, L =
(
∂x

[
log a0x(X⊥0)

])−1
=

(
∂y

[
log a0x(X⊥0)

])−1

and V (0)μ is the unperturbed flow vector defined by V (0)0 =

1, V (0)i(Zμ) = dZ(0)i/dZ0. Overbars in Eqs. (27) and (28)
indicate the average over η-period fast oscillations. Note
that all terms including az are subtracted in the process of
averaging in Eq. (28). Then, the new covariant vector up to
the first order is given by Γ′μ = Γ

(0)
μ +εΓ

′(1)
μ . Since Γ′(1)

μ does
not contain variables P′x, P′y, and Z′, the functional form of
the oscillation-center equations of motion for X′, Y′, and
p′η are the same as those of the zeroth-order, i.e., Eqs. (21),
(22), and (25), respectively. The equations of motion for
other components are obtained as follows:

dZ′

dη
=

dZ(0)

dη

∣∣∣∣
Z′μ
+

m2c2

p′2η

a2
0x0

2kz

[
X̃′ + Ỹ′

L

]
, (29)

dP′⊥
dη
=

mc
p′η

mca2
0x0

2kzL
ê⊥, (30)

where ê⊥ is the unit vector perpendicular to the z-axis,
X̃′ ≡ X′ − x0, and Ỹ′ ≡ Y′ − y0. The expression dZ(0)/dη|Z′μ
is intended to replace coordinate variables Z(0)i with those
of Z′μ, in Eq. (23). Note that since the first-order backward
Lie transformation adds only oscillatory components of
motion, we have the relation Z̄′i = Z̄i. Therefore, the right-
hand side of Eq. (30) is the ponderomotive force in the
original oscillation-center coordinate. From Eq. (30), we
can see that az does not appear in the first-order pondero-
motive force. This result is physically reasonable, given
the following consideration: In the presence of a nonzero
value of az ∼ �(ε), the particle oscillates in the z-direction
due to the z-component of the electric field, εEz. This first-
order oscillation affects the oscillation in the x-direction
through the u × B force. The ponderomotive force appears
as the average force on the oscillating particle owing to the
field gradient, which is assumed to be�(ε). Thus, terms in-
cluding az will appear as oscillatory terms in the first order
and secular terms in the second order. We have confirmed
that terms proportional to a0z appear in the first-order os-
cillatory component in both the x- and z-directions.

3.3 Second-order particle orbit
Next, we analyze second-order particle motion. Here,

for simplicity, we consider the case where the field is
uniform in the y-direction, i.e., ∂ya = 0, although it
is straightforward to include the variation. We also ne-
glect the z-component of the vector potential in order
to see only the effect of the curvature on particle mo-
tion. We transform the coordinate to a new one, Z′′μ =
(η; X′′, Y′′, Z′′, P′′x , P′′y , p′′η ), and calculate the new covari-
ant vector Γ′′μ using the relation C(2)

μ = Γ
(2)
μ − L(1)Γ

(1)
μ +
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L(1)2Γ
(0)
μ /2. Then, we have

Γ′′(2)
μ =

(
V (0)μC(2)

μ ; 0, 0
)
, (31)

V (0)μC(2)
μ =

mca2
0x0

4kz

mc
p′′η

[(
1
L2 +

1
R

) (
X̃′′2 +

l2

4

)

+
1
L2

3
16

l
a0x0

kz

mc
p′′η

]
. (32)

Here, R ≡
([
∂2

xa0x(x0)
]
/a0x0

)−1
is the scale length of the

field curvature. The new covariant vector up to the sec-
ond order is given by Γ′′μ = Γ

(0)
μ + εΓ

′(1)
μ + ε

2Γ
′′(2)
μ . Since

the new Hamiltonian, −Γ′′0 , does not contain the variable
Z′′, the corresponding component p′′η is found to be con-
stant. Thus, the equations of motion in the x-direction are
reduced to

dX′′

dη
= − P′′x

kz pη0
, (33)

dP′′x
dη
= −mca0x0

2
l
[

1
L
+

(
1
L2 +

1
R

)
X̃′′

]
. (34)

These equations determine the particle motion up to the
second order with respect to ε, which varies slowly com-
pared with the period of fast oscillation appearing in the
zeroth-order orbit.

In the case 1/L2 + 1/R ≥ 0, we obtain a slow oscilla-
tory motion given by

P′′x = α sin θη + P(2)
x0 cos θη, (35)

X′′ = − α
mc

1
θζ0kz

(cos θη−1)+
P(2)

x0

mca0x0

l
θ

sin θη+X′′0 , (36)

where

θ = l

√
1
2

∣∣∣∣∣ 1
L2 +

1
R

∣∣∣∣∣. (37)

Here, α is a constant determined by the initial condition
as α = mca0x0θ

(
1 − l/

(
2Lθ2

)
− 7l/ (8L)

)
, X′′0 is the ini-

tial particle position, and P(2)
x0 ∼ �(ε2) is the initial value

of P′′x calculated by the second-order backward Lie trans-
formation. From Eq. (37), we see that θ, the normalized
period to the phase η, increases as the curvature of the field
and/or the laser field amplitude increases. Remarkably, the
unbounded secular motion originating from the first-order
ponderomotive force given in Eq. (30) is changed to the
bounded solution, Eqs. (35) and (36), by taking into ac-
count the second order curvature terms. This motion cor-
responds to a betatron oscillation by which the particle is
confined to a finite radial region.

In the case 1/L2 + 1/R < 0, Eqs. (33) and (34) yield
the solution

P′′x =
α + P(2)

x0

2
eθη +

−α + P(2)
x0

2
e−θη. (38)

This solution indicates that the particle is ejected from the
region of large laser field amplitude. Taking the expansion

of the right-hand side of Eq. (38) by assuming θη ∼ � (ε),
we obtain

P′′x = αθη + P(2)
x0 , (39)

X′′ =
α

mc
1

kzζ0

θ

2
η2 +

P(2)
x0

mc
1

kzζ0
η + X′′0 . (40)

This solution is consistent with that obtained in Eq. (30)
up to the first order although the second order collection is
included in Eqs. (39) and (40).

Here, we neglected the z-component of the vector po-
tential, az, for simplicity. The inclusion of az may cause
the modulation of amplitude α and/or period θ, which will
be discussed separately.

4. Summary
We derived an equation system describing the rela-

tivistic ponderomotive force and the related particle dy-
namics in a transversely focused linearly polarized laser
field up to the second order with respect to ε. In the first
order, we obtained the ponderomotive force proportional
to the field gradient in the x- and y-directions that is es-
sentially the same as the result in Ref. [8]. In the second
order, we found that the particle can exhibit long-period
betatron-like oscillatory motion characterized by the cur-
vature of the laser field amplitude. This suggests that the
control of the curvature is important in confining the parti-
cle and maintaining the laser-particle interaction in trans-
versely localized high-intensity laser fields. The betatron-
like oscillation may cause intense radiation, which will be
discussed in a future study.

Present results up to the first order and the expansion
form, Eqs. (39) and (40), up to the second order are con-
sistent with those obtained by performing the perturbation
expansion directly on the equation of motion. However,
in the present analysis, nonlocal solutions, Eqs. (35), (36),
and (38), are obtained for the first time by the Lie pertur-
bation approach.

In the present study, we consider only the case in
vacuum, whereas various additional fields, such as self-
induced electromagnetic fields and longitudinal and/or
transverse plasma waves, and corresponding forces are in-
corporated in plasmas. Such fields can be phenomenolog-
ically included in the present theoretical framework (e.g.,
Ref. [6]) although they should be self-consistently deter-
mined. These studies remain as future work.
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