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The GNET code is used to study α particle confinement with energy diffusion and pitch angle scattering in
helical plasmas based on the Monte Carlo technique. The dependency of the accuracy of the distribution function
on the number of test particles is studied. It is found that, as the number of test particles is increased, the shape of
the velocity space distribution becomes smooth and the scattering of the energy loss fraction becomes small and
converges to 5.06%.
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1. Introduction
In a heliotron reactor, the magnetic field is generated

mainly by the coil current, and this system does not require
a plasma current to produce a poloidal magnetic field. As
a result, disruption due to the plasma current are avoided.
However, the plasma behavior in three dimensional mag-
netic configuration -such as heliotron reactors- are more
complex than in tokamaks. Several physics and technical
problems remain to be studied, such as the behavior and
confinement of high energy α particles in a helical plasma.

In heliotron systems, the magnetic field has two types
of ripples, one is the helical ripple and the other is the
toroidal ripple. An α particle trapped in a helical ripple
is called a helical trapped particle. An α particle trapped in
a toroidal ripple is called a toroidal trapped particle. An α
particle which is trapped in neither the helical nor toroidal
ripples is called a passing particle. Additionally, an α par-
ticle which transits between being a trapped particle and a
passing particle is called a transition particle. These α par-
ticle motions cause complex orbits of trapped particles and
enhance radial diffusion of energetic α particles.

In heliotron devices, when D-T experiments are per-
formed, the confinement of high energy α particles is a
very important issue. In order to keep a high plasma tem-
perature, the high energy α particles must be confined un-
til they thermalize. If high energy α particles are lost, not
only is the heating power reduced, but the first wall would
be damaged locally. Therefore, it is important to under-
stand the behavior and the confinement of high energy α
particles.

In this paper, the behavior of α particles are analyzed
by using the Monte Carlo method. In this method, the re-
sulting quantities are estimated using a finite number of
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test particles. Thus, statistical noise due to the finite num-
ber of test particles is inevitable. It is important to examine
how many test particles are required to obtain a solution
to the desired accuracy. However, the minimum number
of particles necessary for an accurate evaluation of the α
particle distribution in a helical magnetic configuration has
not been well studied, previously.

In this paper, we have verified the dependence of the α
particle distribution on the number of test particles assum-
ing the helical type reactor extending the LHD [1] mag-
netic configuration.

2. Simulation Model
In this study, we assume the fusion reactor extending

the LHD magnetic configuration. This magnetic configu-
ration has the neoclassical transport optimized configura-
tion in vacuum (the NC configuration), as shownin Fig. 1,
which is based on the configuration Rax = 3.53 m in LHD
[2], where Rax is the magnetic axis major radius. This re-
actor has a plasma volume of 1000 m3 and a magnetic field
strength of 5 T.

The drift kinetic equation for the α particles in five di-
mensional phase space, with pitch angle and energy scat-
tering, is described as follows :

∂ f
∂t
+ (�v‖ +�v⊥) · ∇ f + �̇v · ∇V f =

Ccoll( f ) + Lparticle( f ) + S α, (1)

where f is the distribution function of α particles, �v‖ is the
velocity parallel to magnetic lines, �v⊥ is the drift velocity,
Ccoll is the linear Coulomb collision operator, Lparticle is the
loss from the last closed flux surface (LCFS), and S α is the
source term of the α particle generated by the fusion reac-
tion. We solve equation (1) using the GNET (Global NEo-
classical Transport) code [3], which uses a Monte Carlo
technique to calculate the distribution function for the α
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Fig. 1 The flux contour for the NC configuration in the real co-
ordinate. R is the major radius and Z is the minor radius
in vertical direction.

particles.
In order to solve the drift kinetic equation (1), we in-

troduce the Green function G as follows :

∂G
∂t
+ (�v‖ +�vD) · ∇G + �̇v · ∇�vG =

Ccoll(G) + Lparticle(G), (2)

with the initial condition G(�x,�v, t = 0|�x ′,�v ′) = δ(�x −
�x ′)δ(�v − �v ′) and, f =

∫ t
0 Gdt. The function G is evaluated

using the equations of guiding center motion of test par-
ticles, which is expressed by the Hamiltonian of charged
particles

H =
1
2

mv2
‖ + μB(ψ, θ, φ) + qΦ(ψ), (3)

in Boozer coordinates. In this study, the electrostatic po-
tential Φ is assumed to be zero. In order to solve the equa-
tion of guiding center motion, the 6th-order Runge-Kutta
method is used.

The linear Coulomb collision operator Ccoll includes
the operators of the pitch angle scattering and the energy
scattering with background ions (deuterium and tritium)
and electrons. These operators have been evaluated by
Boozer and Kou-Petravic [4]. The former operator is

λn = λn−1(1 − νdτ) ±
[(

1 − λ2
n−1

)
νdτ
]1/2

, (4)

where λ = v‖/v, νd is the deflection collision frequency, τ
is a time step, and subscripts n and n − 1 are numbers of
time step. The symbol ± means the sign is to be chosen
randomly. The latter operator is described as the energy at
time step n, En,

En = En−1 − (2ντ)
[
En−1

(
3
2
+

En−1

ν

dν
dEn−1

ET

)]

±2 [ETEn−1 (ντ)]1/2 , (5)

Fig. 2 The initial radial profile of α particles, for n(0) = 2.0 ×
1020m−3, with 50,000 test particles.

where ν is the collision frequency and ET is thermal energy.
The source term S α is evaluated by using the fusion

reaction rate

S α = nDnT

×
�

fD(vD) fT (vT)σ(E) |vD − vT| dvDdvT, (6)

where σ is a total fusion reaction cross-section, E is rel-
ative energy between deuterium and tritium, n is a ra-
dial profile of plasma density, and subscript D and T are
deuterium and tritium respectively. fD and fT are the
Maxwellian distribution function of deuterium and tritium
respectively. v is dependant on the plasma temperature T .
In this paper, T and n are taken to be

T (ρ) [keV] = 9.5(1 − ρ2) + 0.5, (7)

n(ρ) [1020m−3] = 1.9(1 − ρ8) + 0.1, (8)

where ρ is a normalized minor radius. The initial radial
profile of the α particles is plotted in Fig. 2 where the hor-
izontal axis is the normalized plasma minor radius and the
vertical axis is the number of particles distributed on each
magnetic flux surface.

In this figure, 5 × 104 α particles are generated. We
study the particle number dependency by using the number
of α particles Nα from 103 to 105.

3. Simulation Results
We run the GNET code with a varying number of test

particles, Nα, from 103 to 105, until the α particle distri-
bution reaches steady state. We study the N dependency
of the α particle distribution in the helical type reactor ex-
tending the LHD magnetic configuration.

We first analyze the velocity-space distribution func-
tion of α particles. Figure 3 shows the velocity distribution
of α particles in the plasma for various values of Nα. v‖
is the velocity parallel to the magnetic field and v⊥ is the
velocity perpendicular to the magnetic field. The v‖ and
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Fig. 3 Contour plots of the particle density in velocity space for
the cases Nα = 2000, 10, 000, and 50, 000. The contour
levels are spaced logarithmically in the velocity space
distribution.

Table 1 Deviation from the fitted lines.

Nα θ = 90◦ θ = 60◦ θ = 30◦

2000 1.01 × 10−3 2.57 × 10−3 1.06 × 10−2

10000 2.63 × 10−4 4.24 × 10−4 2.66 × 10−3

50000 1.09 × 10−4 2.27 × 10−4 6.98 × 10−4

100000 6.87 × 10−5 1.34 × 10−4 7.55 × 10−4

v⊥ are normalized by v1 M, which is the α particle veloc-
ity of 1 MeV. There are 128 grid points in v‖ and 64 grid
points in v⊥. The distribution of low energy α particles
becomes peaked by slowing down. It is found that the con-
tours of the velocity space distribution becomes smooth as
the number of test particles increases.

Next, we compare the velocity space distribution in
the same pitch angle. Figure 4 shows the profile of the ve-
locity space distribution at the specific pitch angle θ = 90◦

for Nα = 2 × 103 and 105, where the distributions are nor-
malized by the slowing down time, τs. The blue line shows
a cubic fit to the data points. We can see that the velocity
profiles become smooth as the number of test particles in-
creases, and we see that the distribution converges. There
is no clear difference of the velocity profiles between the
5 × 104 and 105 test particle cases. We show the deviation,
σα, from the fitted curve (cubic functions) on Table 1. We

Fig. 4 The velocity profiles at the pitch angle θ = 90◦ for each
particle number case are normalized by the slowing down
time τs. The blue line is the fitted curve. The lower sub-
figures show the difference between each α particle dis-
tribution and the fitted curve.

Fig. 5 The energy loss fractions of α particle ηloss are calcu-
lated until α particles are thermarized for Nα = 1000 ∼
100, 000.

can see thatσα becomes small when increasing of the num-
ber of particles and σα � 10−4 when Nα > 5 × 104. We
conclude that the velicity-space distribution of α partciles
is well converged for Nα > 5 × 104.

Figure 5 shows the energy loss fraction of the α par-
ticles, ηloss, for several Nα. The energy loss fraction is de-
fined as

ηloss =
Eloss

Einitial
× 100, (9)

Eloss =

∫ t

0

∫ v‖

−v‖

∫ v⊥

0

∫

V
Lparticle( f )dVdv⊥dv‖dt,

Einitial =

∫ t

0

∫ v‖

−v‖

∫ v⊥

0

∫

V
S αdVdv⊥dv‖dt.
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Table 2 Specs of 8 core Xeon (Cluster Node).

Computer name vine
Number of nodes 16

CPU
3.16 GHz ( Intel Xeon

Quadcore Dual) ×2 / node
Memory 16GB/ node
HDD 73GB / node

Fig. 6 The calculation time for each case. The calculation time
increases linearly with the number of test particles. On
the blue line, the calculations have not been optimized.
On the green line, the calculations have been optimized.

When the particle number is small (Nα < 2 × 104), ηloss

is not converged. When Nα > 3 × 104, ηloss converges to
5.06%. We see that 5 × 104 or more of test particles are
necessary to accurately calculate ηloss.

However, we also have to consider the CPU cost for
the calculation. We estimate the CPU time for the GNET
code in each case Using the computer specs shown in
Tabel 2. Each blade has 2 Quad Core CPUs and 16 GB

memory. Figure 6 shows the calculation time for each case.
The horizontal axis is the number of test particles, and the
vertical axis is the calculation time per core. The blue line
is the calculation time without optimization, and the green
line is the calculation time with optimization, where the
optimization option is specified in the compilation process.
When we run GNET without optimization, the calculation
time tct is tct [sec] ∼ 2.2×Nα. When we run with optimiza-
tion, tct [sec] ∼ Nα. In the case of 5 × 104 particles, the
calculation take about 14 hr.

4. Summary
We have studied the test particle number dependency

of the accuracy of α particle distributions in a helical type
fusion reactor using the drift kinetic equation solver code
GNET. We vary the number of test particles, Nα : 103 ∼
105. We have found that the contours of the velocity space
distribution becomes smooth as the number of test particles
increases. When Nα > 3 × 104, the variation of the energy
loss fraction, ηloss, becomes very small and converges to
5.06%. We have seen that 5 × 104 or more test particles
are necessary to accurately calculate ηloss. In the case of
5 × 104 particles, we need about 14 hours of CPU time on
our Xeon cluster.
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