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Fluid flow can play a significant role in plasma equilibrium, possibly producing transport barriers and profile
pedestals. To be consistent with hot ions, finite Larmor radius (FLR) effects should be included. Ito and Nakajima
have developed a formulation for calculating magnetohydrodynamic (MHD) equilibria with poloidal-sonic flow
and FLR effects using an inverse aspect-ratio expansion, known as the “Ito formulation” [A. Ito and N. Nakajima,
AIP Conference Proceedings 1069, 121 (2008)]. The Ito formulation typically possess a singularity when the
poloidal flow varies from sub- to super-poloidal sonic, known as the “poloidal-sonic (PS) singularity.” The
presence of the PS singularity prevents the Ito formulation from being directly applied to equilibria with such
flows. An investigation of the single-fluid MHD model shows that the PS singularity is due to an inverse aspect-
ratio expansion of the Bernoulli equation. This suggests that, in order to use the Ito formulation for an accurate
calculation of MHD equilibria with poloidal-sonic flows, the Bernoulli equation must be handled non-linearly
near the singularity.
c© 2011 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: magnetohydrodynamics, equilibrium, flow, poloidal-sonic singularity, Bernoulli equation, two-fluid
model, finite Larmor radius

DOI: 10.1585/pfr.6.2403044

1. Introduction
Equilibrium flow can be important for macroscopic

stability and energy confinement [1]. For single-fluid mag-
netohydrodynamics (MHD), equilibria with flow can be
calculated by solving a generalized Grad-Shafranov (GS)
and Bernoulli equation [2,3]. Under the single-fluid MHD
model, poloidal flows which vary from sub- to super-
poloidal-sonic can produce profile pedestals [2, 4]. We re-
fer to such flows as “poloidal-transonic” and the pedestal
as the “poloidal-sonic (PS) discontinuity.” However, such
calculations are not consistent with hot ions, which pro-
duce small-scale length effects not included in the single-
fluid MHD model.

Ito and Nakajima have developed a formulation for
MHD equilibria with flow which includes ion finite Lar-
mor radius (FLR) and two-fluid Hall MHD effects [5]. We
refer to this as the “Ito formulation.” The formulation uses
an expansion in the inverse aspect-ratio (ε) and treats flows
on the order of the poloidal sound speed, and equilibrium
is governed by equations for the first- and second-order
poloidal flux. The formulation typically possesses a sin-
gularity for poloidal-transonic flows. We refer to this as
the “poloidal-sonic (PS) singularity.” An overview of the
Ito formulation is presented in Sec. 2. Further information
on the Ito formulation, included an analysis of the criteria
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governing the presence of the PS singularity, is presented
in Ref. [6].

The presence of the PS singularity prevents the Ito for-
mulation from being applied directly to the calculation of
equilibria with poloidal-transonic flows [7, 8]. In order to
better understand the PS singularity in the Ito formulation,
we have compared the Ito formulation to a formulation for
single-fluid MHD equilibria without using an expansion in
ε. We have derived a set of equations governing such equi-
libria. These equations describe the same physics as those
derived by other authors, such as Hameiri [9]. However,
the formulations in the existing literature include a large
number of abstract quantities; in our formulation, we in-
stead use quantities with simpler physical meanings. The
formulation and an overview of the derivation is presented
in Sec. 3.

The formulation derived in Sec. 3 includes the
Bernoulli equation, which governs the relationship be-
tween the flow and density. For a given flow, the Bernoulli
equation can possess zero, one, or two real roots for
the density. If there are no real roots, then the given
flow is physically impossible. The single root occurs at
the “poloidal-transonic surface,” where the poloidal flow
changes from sub- to super-poloidal-sonic [3]. In Sec. 4,
we examine the Bernoulli equation under a certain subset
of the ordering imposed by the Ito formulation, and we
show that the PS singularity is reproduced.
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In Sec. 5, we state our conclusions regarding how the
Ito formulation would need to be modified in order to be
applied to the calculation of MHD equilibria with poloidal-
transonic flows, FLR effects, and two-fluid Hall MHD ef-
fects.

2. The Ito Formulation
Two-fluid MHD equilibria with flow and hot ions are

described by the following set of equations [5]:

∇ · B = 0, (1)

∇ × B = μ0 j, (2)

∇ × E = 0, (3)

∇ · (nu) = 0, (4)

E + u × B = λH ( j × B − ∇pe) / (en) , (5)

ue ≡ u − λH j/ (en) , (6)

ue · ∇pe + γpe∇ · ue = − 2
5λiγ∇ · qe, (7)

u · ∇pi + γpi∇ · u = − 2
5λeγ∇ · qi, (8)

j × B − ∇ (pi + pe) = minu · ∇u + λi∇ ·Πgv
i , (9)

where B is the magnetic field, μ0 is the permeability of free
space, j is the electric current density, E is the electric field,
u is the (single-fluid) velocity, pe is the electron pressure,
e is the elementary charge, n is the electron density, mi

is the ion mass, γ = 5/3, qe is the electron heat flux, pi

is the ion pressure, qi is the ion heat flux, and Πgv
i is the

ion gyroviscous tensor. λH, λi, and λe are artificial indices
which have been introduced to control the two-fluid, non-
ideal terms.

The Ito formulation is relevant for high-beta (pi ∼
pe ∼ εB2/μ0) large aspect-ratio (ε ≡ a/R0 � 1) ax-
isymmetric (∂/∂φ = 0) tokamak (Bpol ∼ εB) equilib-
ria with flows on the order of the poloidal sound speed
(vtor � vpol ∼ Cs,P):

Cs,P ≡
(
Bpol/B

) √
γT/mi. (10)

Finally, assuming the slow dynamics ordering [10] implies
ε ∼ ρi/a, where ρi is the ion gyroradius.

Equilibrium is governed by five free profiles of the
first-order poloidal flux and GS equations for the first- and
second-order poloidal flux [6]. Because of the flow, the
pressure contours can deviate from the flux contours. The
term which governs the deviation can be singular. Under
the single-fluid MHD model, the singularity happens when
vpol = Cs,P and is the aforementioned PS singularity.

3. Axisymmetric Single-Fluid MHD
Equilibria with Flow
In order to better understand the PS singularity in the

Ito formulation, we consider a formulation for single-fluid
MHD equilibria without using an expansion in ε. In this
section, we derive the equilibrium equations for this for-
mulation. In Sec. 4, we will compare this formulations
with the Ito formulation.

Consider the single-fluid MHD model [(λH, λe, λi) =
(0, 0,0)]. Assume 1 < γ < ∞ and use an (R, φ, Z) co-
ordinate system, where R is the major radius, φ is the
toroidal angle, and Z is the distance above the midplane,
with R̂ × φ̂ = Ẑ. Eqs. (1)-(4) imply:

B = ∇ψ × ∇φ + I∇φ, (11)

μ0 j = ∇I × ∇φ − Δ∗ψ∇φ, (12)

E = −∇Φ, (13)

u = n−1∇Ψ × ∇φ + vtorR∇φ, (14)

where ψ is the poloidal flux, I is the poloidal current, Φ
is the scalar potential, Ψ is the stream function, vtor is the
toroidal fluid velocity, and:

Δ∗ ≡ ∂2/∂R2 − (1/R) ∂/∂R + ∂2/∂Z2. (15)

Define the Poisson bracket [[...|...]] and the flux derivative:

[[ f |g]] ≡ ∇φ · (∇ f × ∇g) , (16)

f ′ ≡ ∇ψ · ∇ f /‖∇ψ‖2, (17)

where f and g represent arbitrary scalar functions of (R, Z).
Observe:

[[ f |ψ]] = 0 ⇐⇒ f = f (ψ). (18)

Further, define the “aspect-ratio vector function” εF, the
single-fluid temperature T , and the scalar function τ:

εF ≡ ∇ψ × ∇φ/B = Bpol/B, (19)

T ≡ p/n, (20)

τ ≡ pn−γ = Tn1−γ, (21)

where p ≡ pe + pi.
Applying B· to Eq. (5) yields Φ = Φ(ψ). Applying

B× to Eq. (5) yields Ψ = Ψ (ψ) and:

u =
BΨ ′

n
εF +

(
RΦ′ +

√
1 − ε2

F
BΨ ′

n

)
R∇φ. (22)

Combining Eqs. (8) and (7) yields τ = τ(ψ).
Applying μ0R2∇φ· to Eq. (9) yields:

[[I|ψ]] = [[μ0miRvtorΨ
′|ψ]]. (23)

Thus:

I =
(
I∗ + μ0miR2Φ′Ψ ′

)
/
(
1 − M2

A,P

)
, (24)

for some I∗(ψ), where MA,P is the poloidal-Alfvénic Mach
number and VA,P is the poloidal Alfvén velocity:

MA,P ≡ vpol/VA,P = Ψ
′ √μ0mi/n, (25)

VA,P ≡ εFB/
√
μ0min. (26)

Observe that I is singular when vpol = VA,P. This is the
poloidal-Alfvénic singularity.

Applying −n−1B· to Eq. (9):

n−1[[p|ψ]] = [[K|ψ]], (27)
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Fig. 1 Sample plots of η − (1 + H1) + H2η
−N vs η. All of the

curves are for γ = 5/3 (N = 3). The legend entries are
the values of H1 and H2, respectively.

where:

K ≡ 1
2 mi
(
RΦ′
)2 − 1

2 mi
(
BΨ ′/n

)2 . (28)

Observe:

n−1[[p|ψ]] = n−1τ[[nγ|ψ]]

=
[
γ/ (γ − 1)

]
τ[[nγ−1|ψ]] = [[γ/ (γ − 1) T |ψ]]. (29)

Thus:

T = T∗ +
[
(γ − 1) /γ

]
K, (30)

for some T∗(ψ).
As the physical meaning of τ is not clear, we rewrite

τ in terms of n. Using Eqs. (21) and (30):

nγ−1 = nγ−1
∗ +

[
γ/ (γ − 1)

]
(n∗/T∗) K, (31)

where:

n∗ = n∗(ψ) ≡ (T∗/τ)1/(γ−1) . (32)

Eq. (31) is the analog of the Bernoulli equation for single-
fluid MHD equilibria. However, it cannot be used to di-
rectly evaluate n because K depends on n (Eq. (28)). De-
fine N, H1, H2 and η:

N ≡ 2/ (γ − 1) , (33)

H1 ≡ [mi/ (NγT∗)
] (

RΦ′
)2 , (34)

H2 ≡ [mi/ (NγT∗)
] (

BΨ ′/n∗
)2 , (35)

η ≡ (n/n∗)2/N . (36)

Note that H2 depends on n via B via I (Eq. (24)). However,
as long as vpol � VA,P, the dependence will be very weak.
With these definitions and a bit of rearranging, Eq. (31) be-
comes:

η − (1 + H1) + H2η
−N = 0. (37)

The function on the left-hand side of Eq. (37) is illustrated
in Fig. 1 for several values of H1 and H2.

Depending on H1 and H2, Eq. (37) may have zero,
one, or two real roots. Using dH2/dn = 0, the criteria

Fig. 2 Contours of the number of real roots to Eq. (37) in
(H1,H2)-space for γ = 5/3 (N = 3). There are no real
roots in the white region and there are two real roots in
the shaded region. There is one real root on the boundary
between the regions.

for the equation to have at least one real root can be found
by taking d/dη:

H2/ (1 + H1)N+1 ≤ NN/ (N + 1)N+1 . (38)

This criteria is illustrated in Fig. 2.
Finally, applying −μ0R2(‖∇ψ‖2)∇ψ· to Eq. (9):
(
1 − M2

A,P

)
Δ∗ψ + 1

2

(
I2
)′
+ μ0R2 p′ =

‖∇ψ‖2 (v/VA,P
)2 (log R

)′ − 1
2 M2

A,P

(
‖∇ψ‖2

)′
.

(39)

This is the generalized GS equation for single-fluid MHD
equilibria with flow.

4. Relation Between Bernoulli Equa-
tion and PS Singularity
In Sec. 3, we derived a formulation for single-fluid

MHD equilibria with flow without using an expansion in
ε. In particular, we found that the density must satisfy the
Bernoulli equation (Eq. (37)). In this section, we show how
the Bernoulli equation is related to the PS singularity in the
Ito formulation.

Assume ε � 1, Bpol ∼ εB, and vtor � vpol � VA,P.
Note that these assumptions are a subset of the ordering
assumed for the Ito formulation. From Eq. (22):

∣∣∣∣∣RΦ
′ +
√

1 − ε2
FBΨ ′/n

∣∣∣∣∣ � εF
∣∣∣BΨ ′/n

∣∣∣ . (40)

To the lowest order in ε [8]:

RΦ′ = −BΨ ′/n. (41)

From the definition of H1, H2, and η (Eqs. (34)-(36)):

H2 = (n/n∗)2 H1 = η
N H1. (42)
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Fig. 3 Graphical illustration of how η1 is determined for the case
γ = 5/3 (N = 3), H1 = 0.2, H2 = 0.1. The square is η0.
The circle is η0 + η1.

Fig. 4 Contour plot of
[
(η)0 + (η)1

]
in (H1,H2)-space for γ =

5/3 (N = 3). Contours are shown for 0 <
[
(η)0 + (η)1

]
<

2; contours outside of these bounds have been sup-
pressed. The black line in the suppressed region indicates
the singularity in the linear approximation. The dashed
blue line is H1 = H2. The solid red line is the criteria for
there to be exactly one real root to the Bernoulli equation.

Eq. (37) yields η = 1 and H1 = H2.
Consider the next order in ε: η = (η)0 + (η)1 + ...,

etc. Under the inverse aspect-ratio expansion, we assume∣∣∣(η)1

∣∣∣� ∣∣∣(η)0

∣∣∣, etc. The linearization of Eq. (37) yields:

(η)1 = [(H1)1 − (H2)1] /
[
1 − N (H2)0

]
. (43)

(See Fig. 3 for a graphical representation of the lineariza-
tion.) Observe that (η)1 is singular when N (H2)0 = 1,
or, equivalently, when

(
vpol/Cs,P

)
0
= 1, where Cs,P is

the poloidal sound speed (Eq. (10)). This reproduces the
poloidal-sonic singularity in the Ito formulation for the

single-fluid MHD model.
Comparing the above result with Eq. (37), we see that

the singularity in the Ito formulation occurs when there is
only one root to the Bernoulli equation (See Fig. 4). This
can also be seen in terms of Figs. 1 and 3, when the func-
tion is flat at the point η = 1.

Note that, unlike the poloidal-Alfvénic singularity, the
poloidal-sonic singularity appears only when using an ex-
pansion in ε. The PS singularity results from an inverse
aspect-ratio expansion of the Bernoulli equation.

5. Conclusion
We have found that, in the single-fluid MHD model,

the PS singularity emerges when applying an inverse
aspect-ratio expansion to the Bernoulli equation with the
constraint vtor � vpol � VA,p, and it occurs where the
Bernoulli equation has exactly one root. It should be
noted that results obtained for the single-fluid MHD model
may not necessarily generalize when FLR and two-fluid
effects are included. Nevertheless, our analysis suggests
the following: in order to calculate MHD equilibria with
poloidal-transonic flows, FLR effects, and two-fluid Hall
effects, at a minimum, it would be necessary to modify the
Ito formulation near the singularity to handle the Bernoulli
equation non-linearly.
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