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A detailed analysis of forward and inverse energy transfer processes due to the Hall term effect in freely de-
caying, homogeneous, isotropic Hall magnetohydrodynamics (HMHD) turbulence is performed through Fourier
and wavelet analyses. We analyzed three snapshot datasets that were taken from such a period to allow the tur-
bulence to develop sufficiently with a nearly constant magnetic Reynolds number. Because the Fourier energy
spectra in these snapshots show remarkable agreement after the normalization in terms of the dissipation rates
and the diffusion coefficients, they are considered as a universal equilibrium state. By analyzing the numerical
solutions that are generated without any external forcing, it is confirmed that the inverse energy transfer due to
the Hall term effect is intrinsic to HMHD dynamics. Orthonormal divergence-free wavelet analysis reveals that
nonlinear mode interactions contributing to the inverse energy transfer exhibit a nonlocal feature, while those for
the forward transfer are dominated by a local feature.
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1. Introduction
Although single-fluid magnetohydrodynamic (MHD)

equations are considered an appropriate platform for study-
ing macroscopic behaviors of fusion plasmas, some phe-
nomena may be outside the scope of these equations. The
roles of two-fluid effects have attracted attention in vari-
ous research areas such as fusion plasmas [1, 2] and astro-
physical plasmas [3, 4]. The Hall MHD (HMHD) system
is known as a simple fluid model that includes a two-fluid
effect.

The difference between the MHD and HMHD sys-
tems was discovered to be caused by significant differ-
ences in energy dissipation tendencies, structure forma-
tion processes, and profiles of the generated coherent struc-
tures [5]. In addition, it was discovered that energy trans-
fer of the magnetic field to smaller scales was supressed
due to the Hall term effect by comparing the full simula-
tion result of HMHD equations with that of the truncated
model [6]. This result suggests that the Hall term effect
maintains large scale spatial structures in fully developed
turbulence, which is important for plasma confinement.

Despite this distinct difference, we compared the
wavelet-scale spectra of the energy exchange due to the in-
duction term and found that the dominance of local energy
transfer and energy transfer to small scales were common
to both cases [7]. There is no qualitatively significant dif-
ference in the profiles of the energy transfer spectra. That
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is, the Hall term does not directly change the characteris-
tics of the magnetic induction process.

The supression of energy transfer to small scales ap-
pears consistent with the backscatter of the magnetic en-
ergy. Through Fourier-mode analysis of shell-averaged en-
ergy budget equations, energy transfer from the smaller to
larger scale components, which Mininni et al. discovered
that energy transfers from smaller to larger scale compo-
nents [8]. However, the velocity field is maintained by an
ABC flow forcing at the wave number |kx| = |ky| = |kz| = 2.
Owing to this forcing, energy spectrum and some energy
transfer spectra exhibit a somewhat spiky profile at |�k| � 3.
The effect of forcing on the generated magnetic field is in-
direct, and the Hall term effect occurs solely by the mag-
netic field; therefore, the backscatter phenomenon’s effect
on HMHD turbulence appears inconclusive.

In our previous work, we employed divergence-free
wavelet analysis to confirm that backscattering due to the
Hall term effect exists and that energy is mainly transferred
to the modes very close in spatial scale for all spatial res-
olution classes; that is, the entire energy transfer process
occurs locally [7]. However, because only one snapshot
dataset was previously analyzed [7], further study is nec-
essary to achieve a firm understanding.

2. Numerical Method
In the present study, we focus on the time development

of a nonlinear magnetic energy transfer caused by the Hall
term effect. To exclude the influence of forcing, we analyze
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a freely decaying, homogeneous, isotropic turbulence of
the incompressible HMHD system, which is calculated by
Miura and Hori [5]. The incompressible HMHD equations
are given by

∂u
∂t
+ (u · ∇)u = −∇P + j × b + ν∇2u , (1)

∂b
∂t
= ∇ × ((u − ε j) × b) + η∇2b , (2)

where u is the bulk velocity field and satisfies ∇ · u = 0,
b is the magnetic field, j := ∇ × b is the current density
field, P is the total pressure, ν is the kinematic viscosity,
η is the resistivity, and ε is the parameter for the relative
strength of the Hall term.

The parameters are set to ν = η = 1 × 10−3 and
ε = 0.05. The number of grid points for calculation is
N3 = 5123. The pseudospectral method with 2/3 dealias-
ing rule is adopted (kmax = 170). The details of numerical
schemes and initial conditions are described in Ref. [5].
We analyzed three snapshot datasets at the time t = 1.0,
1.5, 2.0, which are referred to as 2T0, 3T0, and 4T0, respec-
tively, in Ref. [9]. These snapshot datasets were taken at
a time interval that is sufficiently after the period at which
the amplitudes of the vorticity and current density fields
achieved their maximum values (t = 0.5, see Fig. 1 (b) of
Ref. [9]). As is shown in Fig. 1 (c) of Ref. [9], the time de-
velopment of the Taylor microscale Reynolds number and
its magnetic counterpart were rather settled for t � 1.0. In
particular, the Reynolds number of the magnetic field was
almost constant (RM

λ′ � 93). Hence, it is strongly expected
that the characteristics of these three snapshot datasets re-
flect some universal features of spontaneously generated
HMHD turbulence.

The velocity and magnetic fields are decomposed into
Fourier and orthonormal divergence-free wavelet modes as
follows:

f (�x, t) =
∑

�k

f (�k; �x, t) =
∑

j

f j(�x, t) , (3)

where

f (�k; �x, t) := f̂ (�k, t) exp
(
i�k · �x
)
, (4)

f j(�x, t) :=
∑

ε

∑

�l

∑

σ

f jε�lσ(t)ψ jε�lσ(�x) , (5)

and f stands for u or b, f̂ (�k, t) and f jε�lσ(t) are respec-
tively the Fourier and wavelet expansion coefficients, and
ψ jε�lσ(�x) is wavelet base function. Wavelet indices and their
physical implications are explained in Ref. [10]. The scale
index of wavelet j takes values of 0, ..., 8 because the
number of grid points is 5123. The wave number range
of each wavelet function is 1

3 2 j ≤ k ≤ 4
√

3
3 2 j.

3. Fourier Analysis Results
Normalized Fourier energy spectra of the velocity and

magnetic fields for these three snapshots are shown in

(a)

(b)

Fig. 1 Normalized Fourier spectra of (a) kinetic and (b) mag-
netic energies.

Table 1 Dissipation rate of velocity (u) and magnetic (b) fields
and their corresponding characteristic wave numbers.

t ε(u) ε(b) k(u)
η k(b)

η

1.0 0.448 0.601 145.5 156.6
1.5 0.183 0.260 116.3 127.0
2.0 0.086 0.131 96.4 107.1

Fig. 1. To compare the various time results, all the abscis-
sas and ordinates of Fourier spectra were made dimension-
less by using the diffusion coefficient and the dissipation
rate of the field, i.e., ν and ε(u)(t) := −ν ∫ u(t)·∇2u(t)d3�x for
the velocity field, and η and ε(b)(t) := −η ∫ b(t) · ∇2b(t)d3�x
for the magnetic field, respectively. In Table 1 the dissipa-
tion rate and the corresponding characteristic wave num-
bers k(u)

η (t) := 4
√
ε(u)(t)

/
ν3, k(b)

η (t) := 4
√
ε(b)(t)

/
η3 are listed.

It is remarkable that the functional forms of the nor-
malized energy spectra agree well with each other for each
field; that is, the obtained numerical solution is in a self-
similar state. This agreement implies that these fully de-
veloped turbulent HMHD fields are in the universal equili-
blium state. Thus, it is expected that energy transfer con-
tains some universal features of dissipation range dynam-
ics.

It should be noted that the magnetic energy spectra
peaks occured around k/k(b)

η � 0.03 (i.e., k = 4). Fourier
components lower than these modes do not tend to de-
velop, and significant peaks are not observed for the ki-
netic energy spectra. These results imply that the forma-
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(a)

(b)

Fig. 2 Normalized Fourier spectra of transfer functions of (a)
the magnetic induction term (b) the Hall term.

tion of large-scale structures is rather limited for the mag-
netic field, compared with that of the velocity field.

Figure 2 shows Fourier spectra of energy transfer by
the induction term TInd(k, t) and the Hall term THall(k, t),
which are respectively defined as

TInd(k, t) :=
∑

	|�k|
=k

∫

�x
∇ × (u × b) · b(�k; �x, t) d3�x , (6)

THall(k, t) := −ε
∑

	|�k|
=k

∫

�x
∇ × ( j × b) · b(�k; �x, t) d3�x . (7)

As is discussed in Ref. [11], we evaluate the energy ex-
change between the velocity and magnetic fields in terms
of ∇ × (u × b) or j × b, rather than (b · ∇)u or (b · ∇)b,
because of the invariance under the arbitrary change in co-
ordinate system. It should be noted that in Fig. 2 the abscis-
sas and ordinates of the spectra are made dimensionless by
k(b)
η and T (b)

η (t) := (ηε(b)(t))3/4. Owing to this normaliza-
tion, the amplitudes of spectra become comparable for dif-
ferent periods, which allow easy estimation of the relative
contribution of each term to the dynamics. This implies
that the amplitude of the mode interaction term is mainly
determined by the dissipation rate of the magnetic field.

Each transfer spectrum has a commom trend in these
three snapshots. For the wavenumber k/k(b)

η � 0.2, all
the transfer spectra show somewhat fluctuating features.
The amplitude of energy transfer by the Hall term effect
THall(k)/T (b)

η is relatively smaller than that of energy trans-
fer by magnetic induction TInd(k)/T (b)

η by a factor of one-
fifth.

Both forward and backward energy transfers by the

Hall term effect are observed for all analyzed datasets (see
Fig. 2 (b)). Energy is absorbed around k/k(b)

η � 0.2 and
transferred to the smaller wave number region k/k(b)

η � 0.1
and the larger region k/k(b)

η > 0.4. These wave number
ranges of energy loss/acquisition by the Hall term effect
are rather stable against the time development, while the
modulus of the transfer decreases.

Two interesting features can be obsereved. First, the
peak wave number of energy absorbed by the Hall term
effect (k/k(b)

η � 0.2) corresponds to the peak of energy
acquired by magnetic induction. Conversely, the peak
wave number of energy acquired by the Hall term effect
(k/k(b)

η � 0.04) corresponds to the wave number region in
which the magnetic field loses its energy by induction (see
Figs. 2 (a) and (b)). This implies that magnetic induction
and the Hall term effect contribute to energy transfer in an
opposite manner for k/k(b)

η � 0.2. That is, the Hall term
suppresses forward transfer of the magnetic energy.

Second, the peak of inverse transfer remains near
k/k(b)
η � 0.03, while energy transfer to the largest scale

(k = 1) remains almost zero (see Fig. 2 (b)). This tendency
is consistent with the fact that, the peaks of the magnetic
energy spectrum are fixed around k/k(b)

η � 0.03 and the
larger scale components of the magnetic field do not tend to
be excited (see Fig. 1), compared with those of the kinetic
energy spectrum. This observation suggests that inverse
energy transfer by the Hall term effect substantially differs
in nature from the so-called inverse cascade of the two-
dimensional turbulence of a neutral fluid, which is charac-
terized by spontaneous formation of larger-scale coherent
structures [12].

For the two-dimensional turbulence of a neutral fluid,
known as Fijortoft’s theorem, conservation of energy and
enstrophy in the inviscid limit strongly constrain the trans-
fer process [13]. For the HMHD case, such strong con-
straint relations have not yet been determined, although the
system has three quadratic constants in the dissipationless
limit: energy, helicity, and hybrid helicity [14].

The tendency of energy transfer of the entire system
should be noted. Figure 3 shows Fourier spectra of energy
transfers for magnetic and kinetic energies that are respec-
tively defined by

Tb(k, t) :=
∑

	|�k|
=k

∫

�x

(
∇ × ((u − ε j) × b)

)
· b(�k; �x, t) d3�x , (8)

Tu(k, t) :=
∑

	|�k|
=k

∫

�x

(
− (u · ∇)u + j × b

)
· b(�k; �x, t) d3�x . (9)

The abscissas and ordinates of the spectra are made dimen-
sionless by k(b)

η and T (b)
η (t). Energy is mainly transferred

from larger scales to smaller scales as a whole, although
weak inverse transfer of the magnetic energy is observed
for small wave numbers (Fig. 3 (a)). That is, the contribu-
tion of inverse energy transfer due to the Hall term effect
to the whole transfer is rather small.

It is interesting to note that the normalized magnetic
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(a)

(b)

Fig. 3 Normalized Fourier spectra of transfer functions for (a)
magnetic and (b) kinetic energies.

energy transfer function Tb(t)/T (b)
η (t) is almost stationary

(Fig. 3 (a)), while the amplitudes of magnetic induction
and the Hall term effect gradually reduce (Figs. 2 (a) and
(b)). This implies that forward transfer due to magnetic in-
duction is remarkably compensated by inverse transfer due
to the Hall term effect so that the magnetic energy is trans-
ferred to the smaller scales in a self-similar manner on the
whole. Thus, it is conjectured that inverse energy trans-
fer due to the Hall term effect does not favor the inverse
cascade process of the two-dimensional hydrodynamic tur-
bulence, but instead works as a type of regulating process
that retains the whole magnetic energy transfer process in
a self-similar state.

4. Wavelet Analysis Results
We confirmed that backward transfer due to the Hall

term effect is not affected by external forcing such as in-
trinsic to spontaneous HMHD dynamics. The next step is
to determine the type of mode interaction relevant to this
inverse transfer process.

To analyze the details of the mode interaction between
the different scales of the magnetic field, we introduced
the wavelet-scale triad interaction given by the following
integral of wavelet modes:

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall := −ε
∫

bk · ∇ × ( j j × bm
)

d3�x . (10)

This integral is the wavelet counterpart of the triad interac-
tion analysis of the Fourier modes. In the following equa-
tion, the fields

〈
bk

∣∣∣,
∣∣∣bm

∣∣∣, and
∣∣∣b j
〉

are known as to-mode,
by-mode, and from-mode, respectively, because the inte-

Fig. 4 Normalized wavelet-scale spectra of the Hall term effect〈
bk

∣∣∣b
∣∣∣b〉Hall. Ordinates are normalized by the magnetic

dissipation rate ε(b).

gral implies the rate of change of such energy that is sup-
plied from E j := 1

2

∫ |b j|2d3�x, to Ek, by the aid of bm, is
not directly relevant to the change of Em.

In Fig. 4, we show the wavelet scale spectra of the Hall
term effect defined by

〈
bk

∣∣∣b
∣∣∣b〉Hall =

∑
m
∑

j
〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall.
Abscissas are given by k(b)

j /k
(b)
η where k(b)

j is a characteris-
tic wave number defined by

k(b)
j :=

√∫
|∇ × b j|2d3�x

/ ∫
|b j|2d3�x . (11)

This spectrum is the wavelet counterpart of transfer func-
tion spectrum THall(k) given in Fig. 2 (b). As can be ob-
served in the figure, transfer spectra take their extrema at
the wavelet resolution classes k = 2, 5, and 7. It is in-
teresting to note that the values of the wavelet spectra are
positive for k(b)

j /k
(b)
η < 0.06, 0.4 < k(b)

j /k
(b)
η and negative

for 0.06 < k(b)
j /k

(b)
η < 0.4. In addition, the boundary values

appear robust against the time development although each
wave number k j/k

(b)
η varies in time.

Although energy transfer is local relative to spatial
scales, mode interactions that contribute to transfer pro-
cesses are not necessarily dominated by local triad inter-
actions [15, 16]. To identify the mode interaction rele-
vant to the transfer process, we decomposed the wavelet
transfer spectrum into wavelet-scale triad interactions〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall.
Figure 5 shows the j-m plot of the typical wavelet-

scale triad interaction profiles for the assigned scales
(k = 2, 5, 7). The to-mode scales were chosen according to
the extrema of the wavelet-scale transfer for t = 1.0. While
the k = 5 wavelet mode corresponds to the scale with the
most energy loss, those with k = 2 (k = 7) correspond
to that with the highest energy gain in the smaller (larger)
wave number side.

It is remarkable to note that the tendency of energy
transfer due to the Hall term effect qualitatively changes at
the intermediate scales.

For a larger scale (k = 2, Fig. 5 (a)), intense positive
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Fig. 5 Typical wavelet-scale triad interaction profiles caused by
the Hall term effect

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall at the time t = 1.0
for (a) large (k = 2), (b) intermediate (k = 5) and (c)
small (k = 7) spatial scale components. Solid symbols〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall > 0, open symbols
〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall < 0, and
cross symbols

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall = 0. Contours with incre-
ments set to 0.004ε(b) are drawn to grasp the amplitudes
of interactions.

interactions were aligned in a row on the small-scale side
of the j = m and j = m + 1 lines, associated with the ar-
ray of the relatively weak negative triad interactions along
j = m−1. The energy of this scale is mainly supplied from
the smaller scales with indices j, m � k+3. This result im-
plies that local and nonlocal triad interactions contribute to
inverse energy transfer as a whole. Similar inverse energy
transfer by nonlocal interactions is also observed for the
cases of k = 1, 3 and t = 1.5 and 2.0.

For a smaller scale (k = 7, Fig. 5 (c)), intense pos-
itive (negative) energy transfers were sharply aligned on
from-modes j = k − 1 ( j = k + 1), and the contribution
outside these scales was negligible. This result implies that
dominant energy transfer was caused by local triad interac-
tions. For the by-mode, intense transfer aligned in a rather
broader range (3 ≤ m ≤ 6). Therefore, the principal in-
teractions are local along with contributions by somewhat
nonlocal components.

For intermediate scales (k = 5, Fig. 5 (b)), the features
of distribution appeared to be a superposition of those of
larger and smaller scales. Both the strong local transfer to
the smaller scales ( j = 6) and the nonlocal transfer to the
larger scales ( j = 2, 3, 4) were observed.

5. Discussion
It is interesting to note that the interaction tendencies

of inverse and forward transfers gradually change at the in-
termediate scale. This suggests that the Hall MHD system
contains two types of qualitatively different dynamics sep-
arated by the scales of magnetic structures. Further study
is needed to elucidate the relation between energy transfer
and coherent structures.

In summary, the Hall term effect on magnetic energy
transfer was examined by analyzing a freely decaying tur-
bulent solution that exhibited self-similar spectra such that
it was regarded as a universal equilibrium state. Both for-
ward and inverse energy transfers were observed. The
spatial scales and the relevant mode interactions are sub-
stantially different. The forward transfer occurred at small
scales and was dominated by local interactions, while the
inverse transfer showed nonlocal interaction features that
supplied the magnetic energy to larger scales. Because
the solution exhibited universal equilibrium characteristics
and was not affected by external forcing, it is expected that
a similar energy transfer tendency would be detected in
case of other parameters.
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