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We develop a collisional-radiative model for calculating the velocity distributions of excited hydrogen atoms.
In the model, the velocity distributions are approximated using linear combinations of several basis functions
which are treated as discrete velocity states, and only charge exchange collisions with proton are considered as
velocity changing collisions. The populations in the velocity and excited states are calculated under an assumption
of a quasi-stationary state. With the model we derive the velocity distribution of the ground state atoms from that
of excited atoms in the n = 3 level observed for an LHD plasma, where n is the principal quantum number. The
mean kinetic energy of the ground state atoms is estimated to be 5.6 eV, which is 0.05 eV less than that of the n =
3 atoms.
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1. Introduction
In magnetically confined plasmas, dynamics of neu-

tral atoms around the confined region is an energeti-
cally studied topic to improve plasma confinement. Line
shape measurements of atomic hydrogen emissions have
provided information about velocity distributions of the
atoms. J. D. Hey et al. measured the Balmer series line
shapes in TEXTOR [1]. They found that the velocity dis-
tributions of the excited hydrogen or deuterium atoms were
in non-thermal. They attributed the high velocity atoms to
be generated through charge exchange collisions with high
velocity protons. Such non-thermal velocity distributions
of hydrogen or deuterium atoms have also been observed in
other devices, i.e., deuterium line profiles measured by H.
Kubo in JT-60U [2], hydrogen line shapes by T. Shikama in
TRIAM-1 M [3] and by A. Iwamae in LHD (Large Helical
Device) [4].

In our previous report [5], we have shown that the ve-
locity distributions of excited hydrogen atoms in n = 3,
4 and 5 levels, which were converted from the observed
Balmer line profiles for the LHD plasma, are the same
within the experimental accuracy, where n is the princi-
pal quantum number. However, up to now, no models have
been proposed to discuss relations among the velocity dis-
tributions of the excited and ground state atoms.
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In this work, we develop a collisional-radiative model
to calculate the velocity distributions of the excited and
ground state atoms.

2. A Collisional-Radiative Model for
Hydrogen Atoms Including the Ve-
locity Distribution Function
We consider a rate equation for a population in an ex-

cited state p having velocity between v and v+dv as

∂

∂t
Np(v)dv =
∑

q

∫
dv′ r

q→p
(v′ → v)Nq(v′)dv

−
∑

q

∫
dv′ r

p→q
(v→ v′)Np(v)dv,

(1)

where q indicates an atomic or ionic state. rq→p(v′ → v)
is the population transfer rate from state q to p in which
the velocity is changed from v′ to v (p = q or v′ = v case
is included). In the right hand side of equation (1), the
first term indicates the population influx to p state having
velocity of v ∼ v+dv, while the second term indicates the
population outflux.

In this work, we focus the discussion on a hydrogen
plasma under a condition of ne = np � nH, where ne,
np and nH are the electron, proton and atom densities, re-
spectively, and containing no molecule. Since the velocity
change by atomic collisions is negligible in this case, the
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rate rq→p(v′ → v) can be written as

r
q→p

(v′ → v) =
A

q→p
δ(v′ − v) + Ce

ex
q→p
δ(v′ − v)ne

+Cp
ex

q→p
δ(v′ − v)np + Cp

cx
q→p

(v′ → v)np,

(2)

where Aq→p is Einstein’s A coefficient, Ce
ex q→p is the tran-

sition rate coefficient by electron collisions, Cp
ex q→p is that

by proton collisions without velocity change. δ(v′−v) is the
delta function and Cp

cx q→p(v′ → v) is the charge exchange
rate coefficient by proton collisions, which is accompanied
by the velocity change.

For the sake of simplicity in the calculation, we ap-
proximate Np(v) by a linear combination of several normal-
ized Maxwell distribution functions φi(v) with coefficients
cp,i as

Np(v) =
∑

i

cp,iφi(v). (3)

The coefficient cp,i indicates the population in atomic state
p and velocity state i. Substitution of equation (3) into
equation (1) gives a relation

∂

∂t
cp,i =

∑
q, j

r
q, j→p,i

cq, j −
∑
q, j

r
p,i→q, j

cp,i, (4)

where rp,i→q, j is the population transfer rate between the
atomic or ionic states and the velocity states calculated
from the rates defined in equation (2). We use a quasi-
stationary state approximation [6] except for the ground
and ionic states, i.e., the left hand side of equation (4) is
approximated to be zero for all the excited states. Under
this approximation, the set of the equations can be written
in a form

cp,i =
∑

j

Rproton
p,i, j cproton, j +

∑
j

R1
p,i, jc1, j, (5)

where cproton, j and c1, j denote the populations in the ve-
locity state j of the protons and the ground state atoms,
respectively. Rproton

p,i, j and R1
p,i, j are the respective rate coeffi-

cients which are functions of Te, Tp, ne, and np.
We adopted the cross sections of electron collisions

evaluated or compiled by I. Bray et al. [7], L. Johnson [8]
and R. K. Janev et al. [9]. For the proton excitation or
deexcitation collisions, we use the cross sections com-
piled by R. K. Janev [9]. The differential cross sections
of the charge exchange collisions are necessary to calcu-
late rp,i→q, j. However, only the total cross sections are
available for the excited states. Since the forward scatter-
ing is known to be dominant in the charge exchange col-
lisions [10], we assume that all the collisions are the for-
ward scattering. We use the calculated total cross sections
by C. Harel [11] and CAPTURE code [12] developed by
V. Shevelko et al. Figure 1 shows the total cross sections
for charge exchange collisions relevant to the n = 1, 2, 3, 4,
and 5 states. The lower state has the smaller cross section.

Fig. 1 Charge exchange cross sections calculated by C. Harel et
al. [11] and CAPTURE code [12]. The principal quantum
numbers of the initial and final states are shown.

Fig. 2 (a) Calculated velocity distribution of n = 3 atoms at Te

= Tp = 20 eV and ne = np = 1 × 1016 m−3 (dashed-dotted
curve) and 1 × 1018 m−3 (dashed curve). The areas are
normalized to be unity. A Maxwellian velocity distri-
bution with a temperature of 10 eV is assumed for the
ground state atoms, which is shown by the gray bold
curve. (b) The calculated velocity distribution at ne = np

= 1 × 1018 m−3 and its velocity components. It is noticed
that the population in the velocity state of 1 eV is so small
that it is not seen in the figure.

It is noted again that equation (5) is only for the excited
states and we neglect the velocity change of the ground
state atoms. This model can be applied to the system in
which the charge exchange collision for the ground state is
negligible.

In Fig. 2 (a), we show an example of the calculated
velocity distribution of the excited atoms in the n = 3 level
assuming that the velocity distribution of the ground state
atoms is expressed by a single Maxwellian function at a
temperature of 10 eV (the gray bold curve in Fig. 2 (a)).
We assume an ionizing plasma, where the first term of the
right hand side of equation (5) is negligible [6]. We use
five Maxwellian functions at atomic temperatures of 1, 3,
10, 20 and 30 eV for φi(v). The electron and proton tem-
peratures are assumed to be Te = Tp = 20 eV. We set
ne = np = 1 × 1016 m−3 (the dashed-dotted line in Fig. 2 (a))
and 1 × 1018 m−3 (the dashed line). For the first case, the
calculated velocity distribution of the n = 3 atoms is al-
most the same as that of the ground state atoms, so that the
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dashed-dotted line and the gray bold line cannot be dis-
tinguished in Fig. 2 (a). For the latter case, the velocity
distributions of the n = 3 atoms have a high velocity tail.
Figure 2 (b) shows the calculated velocity distribution for
the n = 3 atoms at ne = np = 1 × 1018 m−3 together with
the fractions of five velocity functions. The contribution of
the functions with the temperature higher than Tp is seen.
This contribution is due to the positive dependence of the
charge exchange rate coefficient on Tp, which originates
from the nearly flat energy dependence of the cross section
around 20 eV as can be seen in Fig. 1.

For the purpose of quantifying the difference in the
velocity distributions, we calculate the mean kinetic energy
difference defined here as

ΔEp = Ep − E1, (6)

where Ep is the mean kinetic energy of atoms in p state and
E1 is that in the ground state.

We show ne dependence of ΔE3, ΔE4, and ΔE5 in
Fig. 3. Here, since we consider an ionizing plasma, ΔEp

is generated dominantly by the following two processes; 1.
hot p state atoms generated by charge exchange from cold
p state atoms, and 2. hot atoms generated by charge ex-
change collision in the other excited states and populated
into the p state.

In a low density case, the process 1 is dominant. In
this case, ΔEp is caused as a result of the charge exchange
collision during the lifetime of the p state which is deter-
mined by the inverse of Einstein’s A coefficients. The rea-
son for that the higher state has the larger ΔEp is that the
higher state has the larger cross section and the smaller A
coefficient. In a higher density case, the lifetime of the
p state is determined by the electron collisional depopu-
lation, and the probability to undergo the charge exchange
collision during the lifetime has no dependence on the den-

Fig. 3 ΔEp for n = 3 (red curve), 4 (blue curve), and 5 (black
curve) atoms are shown. The horizontal axis is ne = np.
The vertical dashed lines indicate the boundary densities
for n = 4 and 5 atoms which are defined in the text. All the
results are calculated under the condition of Te = Tp =

20 eV and a single Mexwellian velocity distribution of
the ground state atoms at a temperature of 10 eV.

sity. Boundary densities nb
p for the n = 4 and 5 states, where

the electron collisional depopulation rate equals to the A
coefficient, are shown by the vertical dashed lines in Fig. 3.
ΔEp increases over nb

p because of the process 2, and it re-
flects the increase of the probabilities to have the charge
exchange collisions in the other states.

For estimating the plasma condition to which this
model can be applied, we consider a plasma with a size
of 0.1 m. It takes 2 × 10−6 s for the ground state atoms
having a temperature of 10 eV to pass through the plasma
(the most probable velocity is 4 × 104 m/s). The charge
exchange rate coefficient for the ground state atoms then
becomes 2 × 10−14 m3/s when the ion temperature is 20 eV.
In a lower density plasma than 1019 m−3, the probability to
undergo charge exchange collision is smaller than 0.3, so
that this model can be applied. For this reason, we plot
ΔEp in Fig. 3 for lower density than 1019 m−3.

3. The Collisional-Radiative Model
Analysis of the Observed Spectra in
an LHD Peripheral Plasma
As an example, we show the velocity distributions of

the n = 3, 4 and 5 hydrogen atoms evaluated from the si-
multaneously observed Balmer-α, -β, and -γ spectra in an
LHD plasma in Fig. 4 (a), (b) and (c), respectively, with the
open circles. For the observation, a radial viewing chord
passing through the peripheral region was chosen and the
multi-wavelength-range fine-resolution spectrometer was

Fig. 4 Velocity distributions of hydrogen atoms in the n = 3 (a),
4 (b), and 5 (c) levels converted from the observed spec-
tra for LHD. The area is normalized to be 1. The approx-
imated velocity distribution of the n = 3 atoms with the
equation (3) is shown by the solid curve in (a). The cal-
culated velocity distributions of the n = 4 and 5 atoms are
shown by the solid curves in (b) and (c), respectively. It is
noted that the approximated and calculated velocity dis-
tributions are convoluted with the instrumental functions
for the purpose of comparison with the observed ones.
(d): Calculated velocity distributions of the n = 3, 4, and
5 atoms and the ground state atoms without the convolu-
tion.
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used [13]. It is noted that the velocity distributions shown
in Fig. 4 (a)-(c) are the convoluted ones with the instrumen-
tal functions of the spectrometer. The FWHMs of the in-
strumental functions are 0.9 × 104 m/s, 1.4 × 104 m/s and
2.1 × 104 m/s for the n = 3, 4 and 5 excited atoms respec-
tively.

In the edge region of the LHD plasma, the plasma
parameters have steep spatial gradients, and the relation
between the spatial distribution and the observed velocity
distribution of hydrogen atoms was discussed recently by
Goto et al. [14]. In the present model, however, we ne-
glect the spatial distribution of the plasma parameters and
examine the effect of the velocity changing collisions on
the atomic velocity distribution. We adopt Te and ne at the
emission location as 20 eV and 2 × 1018 m−3, respectively,
which are measured by Thomson scattering method [15].
Since the plasma consists of almost pure hydrogen, np is
expected to be the same as ne. The atomic density there
is estimated to be 1 × 1016 m−3 from the emission intensity
and the plasma parameters, which satisfies the condition of
ne = np � nH. We assume Tp = Te.

We calculate the coefficients R1
p,i, j in equation (5) for

each excited state. We fit the measured velocity distribu-
tion of the n = 3 state with equation (3) and evaluate the
populations c1, j. The fitted result is shown in Fig. 4 (a) with
the solid curve. The velocity distribution of the ground
state and n = 4 and 5 atoms are then calculated using equa-
tion (5). The calculated velocity distribution functions of
the n = 4 and 5 atoms are shown in Fig. 4 (b) and (c), re-
spectively, with the solid curves. It is found that the cal-
culated results well reproduce the experimental ones. In
Fig. 4 (d) we compare the calculated velocity distributions
of the n = 1, 3, 4 and 5 atoms. The mean kinetic energy
of the ground state atoms is E1 = 5.6 eV and the kinetic
energy differences ΔEp are 0.05, 0.2 and 0.3 eV for the n
= 3, 4 and 5 atoms, respectively.

4. Conclusion
We developed a collisional-radiative model for calcu-

lating the velocity distributions of hydrogen atoms. In this

model, the velocity distributions of the atoms in the ground
state and excited states are approximated by linear combi-
nations of several basis functions and the populations in
the atomic states and velocity states are derived under an
assumption of a quasi-stationary state. From the compari-
son with the observed velocity distributions of excited hy-
drogen atoms in an LHD periphery plasma, the velocity
distribution of the ground state atoms was derived.
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