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Several divergence-cleaning techniques for multi-dimensional Godunov-type magnetohydrodynamic
schemes are comparatively investigated. We also propose a new divergence-cleaning technique that is improved
from an earlier projection method to improve the robustness.
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1. Introduction
Godunov-type schemes for magnetohydrodynamics

(MHD) have been developed for decades [1, 2] and re-
cently have been widely applied to space and astro-
physical problems [3, 4]. Although Godunov-type MHD
schemes can precisely capture shocks and discontinuities
without numerical oscillations in one dimension, multi-
dimensional extensions are not straightforward because the
divergence-free condition of the magnetic field is diffi-
cult to maintain in multi-dimensional MHD schemes. Be-
cause of the numerical divergence of the magnetic field,
multi-dimensional simulation runs are sometimes unusu-
ally terminated. Therefore, the development of divergence-
cleaning numerical techniques remains an important chal-
lenge in computational MHD. Although excellent com-
parative studies of divergence-cleaning and/or essentially
divergence-free techniques have been carried out [5, 6], a
number of important ideas [7, 8] have not been consid-
ered in those studies. In this paper, divergence-cleaning
and divergence-free techniques are comparatively studied
with emphasis on the robustness of the methodology. We
adopt the second-order total variation diminishing (TVD)
Runge-Kutta method for time integration [9] and the fi-
nite volume method using the second-order Harten-Lax-
van Leer-Discontinuities (HLLD) approximate Riemann
solver for space discretization [2].

2. Divergence-Cleaning Methods
The following divergence-cleaning and divergence-

free techniques are investigated. For simplicity, a uniform
Cartesian grid is adopted, as shown in Fig. 1.

Projection method: In the projection method [10],
the magnetic field B∗ computed by the multi-dimensional
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Fig. 1 Grid structure. White circles (◦), black circles (•), and
thick lines (-) indicate cell centers, cell edges, and cell
faces, respectively.

MHD scheme is projected into the subspace of divergence-
free fields after every time step as

B = B∗ + ∇φ, (1)

where φ must satisfy a Poisson equation as

∇2φ = −∇ · B∗. (2)

Eq. (1) is directly discretized as

Bx,i, j = B∗x,i, j +
φi+1, j − φi−1, j

2Δx
, (3)

By,i, j = B∗y,i, j +
φi, j+1 − φi, j−1

2Δy
. (4)

If φi, j satisfies the condition

φi+2, j − 2φi, j − φi−2, j

4Δx2 +
φi, j+2 − 2φi, j − φi, j−2

4Δy2

= −
B∗x,i+1, j − B∗x,i−1, j

2Δx
−

B∗y,i, j+1 − B∗y,i, j−1

2Δy
, (5)

the discrete divergence-free condition such that (Bx,i+1, j −
Bx,i−1, j)/2Δx+(By,i, j+1−By,i, j−1)/2Δy = 0 is strictly assured.
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Face-projection method: As discussed in Ref. [6],
Eq. (5) sometimes leads to a checkerboard instability or an
odd-even decoupling. Although Eq. (2) is discretized using
neighbor grids instead of Eq. (5), the discrete divergence-
free condition is not satisfied. We propose herein another
variant of the projection method. The original projection
method implicitly assumes that the magnetic field at a cell
face is given by the arithmetic mean at adjacent cells, e.g.,
bi+1/2, j = (Bi+1, j + Bi, j)/2. On the other hand, the present
method assumes that

bx,i+1/2, j =
Bx,i+1, j + Bx,i, j

2
+
φi+1, j − φi, j

Δx
, (6)

and

by,i, j+1/2 =
By,i, j+1 + By,i, j

2
+
φi, j+1 − φi, j

Δy
. (7)

Using the discrete divergence-free condition such that
(bx,i+1/2, j − bx,i−1/2, j)/Δx + (by,i, j+1/2 − by,i, j−1/2)/Δy = 0,

φi+1, j − 2φi, j − φi−1, j

Δx2 +
φi, j+1 − 2φi, j − φi, j−1

Δy2

= −Bx,i+1, j − Bx,i−1, j

2Δx
− By,i, j+1 − By,i, j−1

2Δy
. (8)

In this method, before every time step, the normal com-
ponent of the magnetic field at each cell face is calculated
by Eqs. (6), (7), and (8). Then, the numerical flux at the
cell face is computed using the divergence-free magnetic
field, where the tangential fields at both sides of the face
are reconstructed by some interpolation technique such as
the MUSCL method. Because the magnetic field at the
cell center evolves with time by the Godunov-type scheme
without correction, the energy conservation is consistent.
On the other hand, the original projection method changes
the magnetic energy at the projection step.

Flux-CT method: The constrained transport (CT)
method is constructed on a staggered grid within which
Stokes’ theorem is applied to the induction equation on
each cell face. Thus, the increments of the magnetic field
at cell faces are given by

Δbx,i+1/2, j = − Δt
Δy

(
Ez,i+1/2, j+1/2−Ez,i+1/2, j−1/2

)
, (9)

Δby,i, j+1/2 =
Δt
Δx

(
Ez,i+1/2, j+1/2 − Ez,i−1/2, j+1/2

)
(10)

in two dimensions. Because the numerical fluxes for the
induction equation are regarded as the electromotive force
(EMF) at cell faces, e.g.,

Ez,i+1/2, j = −FBy

x,i+1/2, j , Ez,i, j+1/2 = FBx
y,i+1/2, j , (11)

where FBy
x and FBx

y are the x-component of the flux for By

and the y-component for Bx, respectively, in the induction
equation, the EMF at a cell edge may be evaluated by an
average of the numerical fluxes as follows [11]:

Ez,i+1/2, j+1/2 =
1
4

(
Ez,i+1/2, j + Ez,i+1/2, j+1

+ Ez,i, j+1/2 + Ez,i+1, j+1/2

)
. (12)

The cell center value of the magnetic field can be given by
the arithmetic mean at adjacent cell faces, for example.

HLL-flux-CT method: As pointed out in Ref. [8], the
flux-CT method is not reduced to the one-dimensional
scheme for plane-parallel grid-aligned flows. Instead of
Eq. (12), another variant of the EMF can be estimated as

Ez,i+1/2, j+1/2

=
1
4

(
Ez,i+1/2, j +Ez,i+1/2, j+1 +Ez,i, j+1/2 +Ez,i+1, j+1/2

)

+
Δy
8

⎡⎢⎢⎢⎢⎣
(
∂Ez

∂y

)

i+1/2, j+1/4
−

(
∂Ez

∂y

)

i+1/2, j+3/4

⎤⎥⎥⎥⎥⎦

+
Δx
8

⎡⎢⎢⎢⎢⎣
(
∂Ez

∂x

)

i+1/4, j+1/2
−

(
∂Ez

∂x

)

i+3/4, j+1/2

⎤⎥⎥⎥⎥⎦ . (13)

The derivatives of the EMF on the cell face may be given
by numerical fluxes of the evolution equations for the
derivatives of the magnetic field [8]. Moreover, the deriva-
tives of the EMF are replaced by the derivatives in the up-
wind side [8]. Here we apply the HLL fluxes, e.g., as

(
∂Ez

∂y

)

i+1/2, j+1/4

=
2
Δy

sr,i+1/2, j

(
Ez,i, j+1/2 − Ez,i, j

)

sr,i+1/2, j − sl,i+1/2, j
· · ·

· · ·
− sl,i+1/2, j

(
Ez,i+1, j+1/2 − Ez,i+1, j

)

· · ·

· · ·
+ sr,i+1/2, j sl,i+1/2, j

(
−By,i+1, j+1/2 + By,i+1, j · · ·

· · ·
+By,i, j+1/2 − By,i, j

)

, (14)
(
∂Ez

∂x

)

i+1/4, j+1/2

=
2
Δx

sr,i, j+1/2

(
Ez,i+1/2, j − Ez,i, j

)

sr,i, j+1/2 − sl,i, j+1/2
· · ·

· · ·
− sl,i, j+1/2

(
Ez,i+1/2, j+1 − Ez,i, j+1

)

· · ·

· · ·
+ sr,i, j+1/2sl,i, j+1/2

(
Bx,i+1/2, j+1 − Bx,i, j+1 · · ·

· · ·
−Bx,i+1/2, j + Bx,i, j

)

, (15)

where sr and sl are the maximum and minimum wave
speeds at the cell face [2]. This algorithm adopts an HLL-
weighted average of the derivatives of the EMF and re-
produces the original one-dimensional scheme for plane-
parallel, grid-aligned flows.

Eight-wave method: The eight-wave method requires
a source term in proportion to the divergence of the mag-
netic field [12]. For example, the induction equation with
a source term as

∂B
∂t
+ ∇ · (VB − BV) = −V(∇ · B) (16)
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is explicitly solved. The divergence of Eq. (16) becomes

∂ (∇ · B)
∂t

+ ∇ · [V (∇ · B)] = 0. (17)

This means that the divergence of the magnetic field is ad-
vected with a local speed.

Hyperbolic divergence-cleaning method: In this
method, an additional scalar evolution equation is solved
and coupled with the induction equation to become totally
hyperbolic as follows [7].

∂B
∂t
+ ∇ · (VB − BV + ψI) = 0, (18)

∂ψ

∂t
+ c2

h∇ · B = −
c2

h

c2
p
ψ, (19)

where ch and cp indicate uniformly constant free parame-
ters. From these equations, a telegraph equation,

∂2 (∇ · B)
∂t2 +

c2
h

c2
p

∂ (∇ · B)
∂t

− c2
h∇2 (∇ · B) = 0, (20)

is obtained. Thus, the numerical divergence of the mag-
netic field is not only advected outward with |ch| unrelated
to fluid flows but also diffused with the diffusivity c2

p.

3. Numerical Experiments
Typical two-dimensional MHD simulations of a com-

pressible turbulence, the so-called Orszag-Tang vortex, are
performed. The Poisson equation in the projection and
face-projection methods is solved by the Jacobi method
with a specific iteration number, typically 10,000, in all
our tests because we reasonably compare the properties of
both projection methods. The difference of the solution
by each divergence-cleaning or divergence-free technique
is not so clear except the hyperbolic divergence-cleaning
method though the results are not shown here. In the hy-
perbolic divergence-cleaning method, fine structures are
slightly spread out independent of cp. The numerical di-
vergence of the magnetic field, on the other hand, is clearly
different. The flux-CT and HLL-flux-CT methods limit the
divergence errors to machine round-off. The divergence er-
rors for the eight-wave method are larger than those for the
other methods, where the maximum of the numerical di-
vergence for the eight-wave method is more than ten times
larger than that for the hyperbolic-divergence cleaning
method. As shown in Fig. 2, the face-projection method
seems to suppress the checkerboard instability, while the
original projection method suffers from the odd-even de-
coupling in the divergence errors. We also find that the
magnitudes of the divergence errors for the face-projection
method are smaller than those for the projection method.
The reason is believed to be that typical wave lengths of the
Poisson equation for the face-projection method are shorter
than those for the projection method, where, in general,
short wavelength modes in the Poisson equation are con-
verged faster than long wavelength modes.

Fig. 2 Simulation results of the Orszag-Tang vortex. The left
and right grayscale images show the two-dimensional
distribution of the pressure and the discrete divergence
of the magnetic field calculated by (a) the projection
method and (b) the face-projection method, respectively.
Grayscale bars are shown only for the discrete diver-
gence, where the scales differ from one another.

We also perform an advection magnetic loop test as in
Ref. [8]. In this test, a weak magnetic loop (β = 2 × 106)
is advected with fluid flows. Simulation results indicate
that the magnetic loop is strongly damped by the hyper-
bolic divergence-cleaning method. On the other hand, the
magnetic field is locally amplified and the shape of the
magnetic loop is deformed by the flux-CT method. The
other methods are presumed to be roughly acceptable com-
pared with the upwind-CT method proposed by Ref. [8],
although those methods also weakly deform the magnetic
loop.

Finally, we perform extremely strong blast wave sim-
ulations, where B = (10/

√
2, 10/

√
2), β = 2 for r ≤ 0.125

and β = 2 × 10−3 for r > 0.125. In general, it is very
difficult to maintain the positivity of pressure at low β

shock fronts because large numerical errors and/or large
numerical corrections of the magnetic field have a large
effect on small thermal energy. Fig. 3 shows the pres-
sure distribution calculated by each divergence-cleaning
and divergence-free method. Notice that the grayscale in
two-dimensional maps is fixed for a specific range, where
high β regions are not displayed to improve the visibility
of low β regions. We also notice that the scale of the ver-
tical axis at the lower graphs differ from each other. Par-
ticularly, in this test, we impose an artificial lower limit
on the pressure value because the present simulation set-
tings may yield negative pressure. We find that the pres-
sure reaches the lower limit in the hyperbolic divergence-
cleaning method, the flux-CT method, and the HLL-flux-
CT method. The high pressure regions in those methods
also seem to be modified unphysically. In particular, the
pressure strongly increases along the shock front in the
flux-CT method. Spurious oscillations are observed in the
projection method because of the odd-even decoupling of
the divergence errors, although the pressure does not be-
come negative. Moreover, unphysical, low wave num-
ber mode structures seem to appear in the upwind side of
the shock. On the other hand, spurious oscillations and
negative pressures are not generated in either the face-
projection method or the eight-wave method. Because
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Fig. 3 Simulation results of the MHD blast wave. The upper
grayscale images show the two-dimensional distribution
of the pressure and the lower graphs indicate the pressure
along y = 0.3 calculated by (a) the projection method, (b)
the face-projection method, (c) the eight-wave method,
(d) the hyperbolic divergence-cleaning method, (e) the
flux-CT method, and (f) the HLL-flux-CT method, re-
spectively.

the projection method and the flux-CT and HLL-flux-CT
methods vary the magnetic energy in the cell after the en-
ergy equation is solved, the pressure is directly affected by
the reconstruction of the magnetic field at the cell center.
Particularly in the low β regions, the pressure may easily
become negative. Therefore, we apply an energy correc-
tion here, as proposed by Ref. [11]:

enew = eG +
1
2

(∣∣∣Bp,c
∣∣∣2 − ∣∣∣BG

∣∣∣2
)
, (21)

where enew, eG, Bp, Bc, and BG are the corrected total en-
ergy, the total energy directly advanced by the Godunov-
type schemes, the magnetic field at the cell center calcu-
lated by the projection method, the magnetic field at the
cell center calculated by the flux-CT and HLL-flux-CT
methods, and the magnetic field directly advanced by the
Godunov-type schemes, respectively. We expect that the
positivity property of the Godunov-type schemes will be
maintained by the use of the energy correction even though
the total energy is not conserved. Fig. 4 shows the pressure
profile in a low β region calculated using the projection
method and the flux-CT and HLL-flux-CT methods with
the energy correction. For comparison, the result obtained
using the face-projection method without applying the en-

Fig. 4 Simulation results of the MHD blast wave. The graphs
show the pressure along y = 0.3 calculated by (a) the
face-projection method, (b) the projection method with
the energy correction, (c) the flux-CT method with the
energy correction, and (d) the HLL-flux-CT method with
the energy correction, respectively.

ergy correction is also shown. We find that the positivity
of the pressure is recovered by the energy correction. The
peak value and position of the pressure seem to be similar
for each method with the exception of the peak value by
the flux-CT method. It is thought that the flux-CT method
may amplify some MHD waves as suggested by Ref. [8]
and indicated by our numerical tests. On the other hand,
the pressure jump at the shock front around x ∼ −0.2 in the
HLL-flux-CT method with the energy correction is slightly
smaller than that in the other methods. Although the reason
is not particularly obvious, wave speeds may slightly differ
from each other. It is believed, however, that the difference
is not significant.

4. Conclusions
Several important divergence-cleaning techniques as

well as divergence-free techniques for multi-dimensional
MHD schemes were comparatively investigated. In ad-
dition, we proposed a new technique, the so-called face-
projection method, that recovers the divergence-free field
at the cell face using the projection technique before every
time step. It was shown that the face-projection method
may surpass the projection method in some respects. The
HLL fluxes were also explicitly applied to the HLL-flux-
CT method for the first time. Because the derivatives of the
EMF at the cell face are estimated by an upwind-weighted
average in this method, it may be weakly more diffusive
than the upwind-CT method proposed by Ref. [8], in which
the derivatives of the EMF at the cell face are replaced by
those in the upwind side. However, the present method is
expected to be more robust than the upwind-CT method.
We also confirmed that the energy correction proposed by
Ref. [11] works well for the projection, flux-CT, and HLL-
flux-CT methods for recovering the positivity in low β re-
gions. We believe that extensions of all present methods to
three-dimensional and non-uniform grids are straightfor-
ward.
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