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We study the phase behavior of bolaamphiphilic solution performing the dissipative particle dynamics sim-
ulations of coarse-grained bolaamphiphilic molecules with explicit solvent molecules. Our simulations show
that there are six kinds of phases: isotropic micellar, micellar, rod-shaped micellar, hexagonal, network-structure
and lamellar. The network-structure and the lamellar phases disappear when the restoring potential against the
bending of bolaamphiphilic molecules in our simulation model is excluded; and the isotropic micellar and the
hexagonal phases disappear when the restoring potential is included. This suggests that the bending potential is
important in the formation of the higher-ordered structures by the bolaamphiphilic molecules.
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1. Introduction
Investigation of self-organization in nonequilibrium

and nonlinear systems is very important to improve
plasma confinement. To gain insights into the univer-
sal self-organizing properties in nature, we study the
self-organization in model systems such as amphiphilic
molecules. Amphiphilic molecules such as lipids and
surfactants contain hydrophilic and hydrophobic parts.
In aqueous solvents, amphiphilic molecules often self-
assemble spontaneously into various structures such as mi-
celles, mesophases, and bicontinuous cubic structures [1].
The phase behavior of coarse-grained amphiphilic dimers
in solution has been investigated by molecular dynamics
simulations [2] and by dissipative particle dynamics (DPD)
simulations [3, 4]. Although several experimental stud-
ies on the supramolecular architectures based on bolaam-
phiphilic molecules, containing a hydrophobic stalk and
two hydrophilic ends, have been done [5], there have only
been a few theoretical and simulation studies on the phase
behavior of bolaamphiphilic solutions. The purpose of this
study is to clarify the phase behavior of bolaamphiphilic
solutions. With a view to investigating the phase behavior
of bolaamphiphilic solutions at the molecular level, we per-
form DPD simulations on coarse-grained bolaamphiphilic
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molecules with explicit solvent molecules and analyze the
formation processes of micelles and mesophases.

2. Simulation Method
2.1 DPD algorithm

First, we express the DPD model and algorithm [3,6].
According to ordinary DPD model, all atoms are coarse-
grained to particles whose masses are the same. We define
the total number of particles as N. The position and veloc-
ity vectors of particle i (i = 1, · · · ,N) are indicated by �ri

and �vi, respectively. Particle i moves according to the fol-
lowing equations of motion, where all physical quantities
are made dimensionless.

d�ri

dt
= �vi, m

d�vi

dt
=

N∑
j(�i)

�Fi j +
∑

〈 j,k〉 ( j,k�i)

�Fi, j,k, (1)

where m is the mass of each particle and 〈 j, k〉 denotes the
summation over combinations of j and k. �Fi j is the total
force between two particles which acts on particle i from
particle j. �Fi, j,k is a force from a three-body interaction
which acts on particle i from a combination of particles j
and k. �Fi j is written as follows:

�Fi j = �FC
i j +
�FR

i j +
�FD

i j +
�FB

i j. (2)

In Eq. 2, �FC
i j is a conservative force deriving from a poten-

tial exerted on particle i by particle j, �FD
i j and �FR

i j are the
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dissipative and random forces between particles i and j,
respectively, and �FB

i j is the bond-stretching force between
neighboring particles.

The conservative force �FC has the following form:

�FC
i j = −∇iφi j, (3)

where ∇i ≡ ∂/∂�ri. For computational convenience, we
adopted the cut-off length as the unit of length. It is as-
sumed that the conservative force �FC are truncated at a
radius of this length. Following this assumption, the two-
point potential φi j in Eq. 3 is defined as follows:

φi j ≡ φ(ri j) =
1
2

ai j

(
ri j − 1

)2
H(1 − ri j), (4)

where ri j = |�ri j|;�ri j ≡ �r j −�ri. We also define the unit vector
�ni j ≡ �ri j/ri j between particles i and j. The step function H
in Eq. 4 is defined by

H(x) ≡
{

0 for x < 0,
1 for x ≥ 0.

(5)

Español and Warren proposed the following simple
forms for the random and dissipative forces [7]:

�FR
i j = σωR(ri j)�ni j

ζi j√
Δt
, (6)

�FD
i j = −γωD(ri j)

(
�vi j · �ni, j

)
�ni j, (7)

where ωR and ωD are introduced as the weight functions of
random and dissipative forces, respectively. ζi j is a Gaus-
sian random variable with zero mean and unit variance,
chosen independently for each pair (i, j) of interacting par-
ticles at each time step, and ζi j = ζ ji. �ni j is the unit vec-
tor between particles i and j. The strength of the dissipa-
tive and random forces is determined by the dimensionless
parameters σ and γ, respectively. The parameter Δt is a
dimensionless time interval of integrating the equation of
motion.

Now we consider the fluctuation-dissipation theorem
of the DPD method. The time evolution of the distri-
bution function of the DPD system is governed by the
Fokker-Planck equation [7]. The system evolves to the
same steady state as the Hamiltonian system, that is, the
Gibbs-Boltzmann canonical ensemble, if the coefficients
of the dissipative and random force terms have the follow-
ing relations:

ωD = (ωR)2 , σ2 = 2Tγ, (8)

where T is the dimensionless equilibrium temperature.
The forms of the weight functions ωD and ωR are not spec-
ified in the original DPD algorithm. We adopted a simple
form of the weighting function ωR(r) = ω1/2

D (r) = ω (r),
where the function ω is defined by ω(x) ≡ (1− x)H(1− x).
[6, 7]

Finally, we introduce the dimensionless potential en-
ergies φB

i j and φBM
i jk . φB

i j corresponds to the bond-stretching

force �FB
i j. If particle i is connected to particle j, φB

i j is

Table 1 Coefficients ai j, which depend on kinds of particles i and
j.

ai j W A B
W 25 25 α

A 25 25 α

B α α 25
NOTE: W is a “water” particle, A is a “hydrophilic” particle
and B is a “hydrophobic” particle. α is varied from 50 to 90
in simulations.

given by φB
i j = φ

B(ri j) = aBr2
i j/2, otherwise φB

i j = 0,
where aB is the potential energy coefficient. φBM

i jk is the

potential energy that causes �Fi, j,k. For ABA molecules,
�Fi, j,k is the restoring force against bending of the ABA
axis. If particle i is ’A’ and is connected to a combina-
tion of particle j (’B’) and particle k (’A’), φBM

i jk is given

by φBM
i jk = φ

BM(�ri j,�r jk) = aBM

{
cos−1

(
|�ri j · �r jk |/(ri jr jk)

)}2
/2

otherwise φBM
i jk = 0, where aBM is the potential energy co-

efficient.

2.2 Simulation model and parameters
In our simulation, we use modified Jury model

molecule that is composed of a hydrophilic particle (A)
and a hydrophobic particle (B) [3]. Water molecules are
modeled as particles W. The mass of all particles are as-
sumed to be unity. The number density of particles ρ is set
to ρ = 5. Total number of particles N ≡ 3NABA + NW is
fixed to N = 5000, where NABA is the number of modeled
bolaamphiphilic molecules ABA and NW is the number of
water particles.

The simulation box is set to cubic. The dimensionless
length of the box L is L = (N/ρ)1/3 = 10.0. We use pe-
riodic boundary conditions in simulation. The interaction
coefficients ai j in Eq. 4 are presented in Table 1. The coef-
ficient of the interaction between A and B is written by a
variable α which is varied from 50 to 90 in our simulation.
The strength of the interaction between W and B is set to
be equal to that of the interaction between A and B. The
coefficient of the bond-stretching potential aB is adopted
as aB = 100. We use the dimensionless time-interval as
Δt = 0.06. The dimensionless strength of the random and
dissipative forces are σ = 3.0 and γ = 9.0/(2T ), respec-
tively.

In the initial configuration, all molecules and water
particles are located randomly and the velocity of each par-
ticle is set under Maxwell distributions with dimensionless
temperature T . We prepare ABA solutions of various con-
centrations (0.1 ≤ c = 3NABA/N ≤ 0.9) and DPD simu-
lations of 1.0 × 107 time intervals are carried out for each
run.

3. Simulation Results and Discussion
3.1 Self-assembled structures for aBM = 0

First, we set the interaction parameter aBM to aBM = 0.
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Fig. 1 Self-assembled structures of the bolaamphiphilic
molecules in the case of T = 1.0 and α = 70 for various
concentrations c. The interaction parameter aBM of the
bending potential is set to aBM = 0. The isosurfaces of
density of the hydrophobic particles (i.e., B particles) are
shown. a) The isotropic micellar phase (c= 0.2), b) the
micellar phase (c= 0.3), c) the rod-shaped micellar phase
(c= 0.6), and d) the hexagonal phase (c= 0.8).

Fig. 2 (Color online) Phase diagrams. The interaction parame-
ter aBM is set to aBM = 0. a) Dimensionless temperature
T vs. concentration phase diagram of ABA solution. b)
Intensity of the interaction coefficient α vs. concentra-
tion phase diagram of ABA solution. In these figures,
the abscissa represents the concentration c. Symbol ×,
blue triangles, brown squares, and red circles represent
the isotropic micellar phase, the micellar phase, the rod-
shaped micellar phase, and the hexagonal phase, respec-
tively.

This excludes the effect of the bending potential energy.
The dimensionless temperature T and the parameter α are
selected to be 1.0 and 70, respectively. Figure 1 shows
the self-assembled structures of molecules at various con-
centrations c = 0.2,0.3, 0.6, and 0.8. The isosurfaces of
the densities of the hydrophobic particles (i.e., B particles)
are shown. An isotropic micellar phase (i.e., the phase
in which the globe-shaped micelles mainly appear) is ob-
served at low concentration (c = 0.2), whereas a hexagonal
phase is observed at high concentration (c = 0.8). These
figures tell us that, as the concentration c increases, the
self-assembled structures of the molecules grow and they
form higher-ordered structures.

3.2 Phase diagram for aBM = 0
We simulated the other cases of (α, c, T ) to obtain the

phase diagram of ABA molecule in W monomers. (see
Fig. 2) In Fig. 2a), the ordinate denotes the dimensionless
temperature T and the interaction coefficient α is selected
to be 70. In Fig. 2b), the ordinate denotes the intensity
of the interaction coefficient α. The dimensionless tem-
perature T is set to T = 1.0. The abscissas of these fig-
ures represent the concentration c. The obtained molecular
configurations are classified into four phases: the isotropic
micellar, the micellar, the rod-shaped micellar, and the
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Fig. 3 The self-assembled structure of the bolaamphiphilic
molecules when aBM = 10.0, c = 0.5, and T = 1.0.
Isosurfaces of densities of the hydrophobic particles are
shown. a) The network-structure phase (α = 50). b) The
lamellar phase (α = 70).

hexagonal.

3.3 Self-assembled structures and phase di-
agrams for aBM � 0

Figure 3 shows the self-assembled structures obtained
when aBM = 10.0, and the dimensionless temperature T
and the concentration c are selected to be 1.0 and 0.5, re-
spectively. A network-structure phase and a lamellar phase
are formed at α = 50 and 70, respectively.

We simulated the other cases of (α, c) to obtain phase
diagram in which aBM and T are set to aBM = 10.0 and
T = 1.0, respectively. The obtained molecular configura-
tions are classified into four phases: the micellar, the rod-
shaped micellar, the network-structure, and lamellar. In
Fig. 4, the simulated phase diagram is shown. The ordi-
nate denotes the intensity of the interaction coefficient α
and the abscissas of these figures represent the concentra-
tion c. The network-structure phase is observed at high
concentrations when α = 50 whereas the lamellar phase is
observed when α ≥ 55.

4. Conclusions
We have performed DPD simulations of bolaam-

phiphilic solutions. We found that four kinds of phases
(isotropic micellar, micellar, rod-shaped micellar, and

Fig. 4 (Color online) Phase diagram of ABA solution. aBM and
T are set to aBM = 10.0 and T = 1.0, respectively. The or-
dinate denotes the intensity of the interaction coefficient
α and the abscissa represents the concentration c. Blue
triangles, brown squares, open squares, and green rhom-
buses represent the micellar phase, the rod-shaped micel-
lar phase, the network-structure phase, and the lamellar
phase, respectively.

hexagonal phase) were formed when aBM = 0. When
T ≥ 1.0, the isotropic micellar phase is observed at lower
concentrations, whereas the hexagonal phase is observed
at high concentrations. In the case of aBM = 10.0, two
new phases appear, namely, the network-structure phase
and the lamellar phase. The isotropic micellar phase and
the hexagonal phase disappear. The phase behavior of the
bolaamphiphilic solutions is obtained for aBM = 0 and
aBM = 10.0 in Figs. 2 and 4, respectively. It would be
very interesting to know if these phase behaviors can be
observed experimentally. A detailed examination is future
problem.
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