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A new scheme referred to as the multi-moment (MM) scheme is explored to develop a more reliable Vlasov
code from the viewpoint of numerical properties. The MM scheme is based on the Eulerian approach, where
spatial derivatives are evaluated by interpolation functions locally constructed by not only grid values but also
0th-, 1st-, and 2nd-order moment values between grids, which largely increases numerical accuracy and resolu-
tion. Through the Fourier analyses and benchmark tests of one-dimensional (1D) and 2D transport simulations,
it is found that the MM scheme exhibits significantly smaller numerical dissipation and dispersion even near the
Nyquist wave-number, and as a result, the MM scheme decreases the numerical cost. The MM scheme is also
applied to a 1D Vlasov-Poisson simulation and we find that the scheme captures finer scale structure in veloc-
ity space compared to the conservative form of interpolated differential operator (IDO-CF) scheme, while also
maintaining good energy conservation.
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1. Introduction
Nonlinear gyrokinetic and driftkinetic Vlasov simula-

tions [1], which avoid directly solving the fast motion pro-
cesses of particles with cyclotron frequencies while main-
taining important kinetic effects, are considered to be an
essential tool for the study of turbulent transport driven
by micro-scale instabilities. Although several gyrokinetic
simulations have adopted a Lagrangian (particle) approach
because of limited computational resources, the Eulerian
(mesh) approach is superior in reducing numerical noise
and extending to an open system. Recently, with the aid
of rapid progress in high-performance computing and ad-
vanced numerical schemes in CFD field, the Eulerian ap-
proach has become more popular in gyrokinetic simula-
tions.

Several numerical schemes have been developed for
solving the Vlasov equation. A splitting scheme [2] is one
candidate; however, the scheme can induce a phase error
associated with convection in the gyrokinetic simulation
because of the nature of the semi-Lagrangian approach.

Recently, an alternative approach referred to as the
conservative form of interpolated differential operator
(IDO-CF) scheme [3] has been applied [4]. This scheme is
based on the Eulerian approach and ensures rigorous con-
servation of the integrated value over the whole system,
so that the scheme can be applied to problems that require
simulations over a long time scale.
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In this paper, we explored the multi-moment (MM)
scheme based on the IDO-CF one. In this scheme, spatial
derivatives are evaluated by interpolation functions, which
is similar in concept to the IDO-CF scheme. However, in
the MM scheme, not only grid and cell-integrated (0th-
order moment) values, but also 1st- and 2nd-order mo-
ment values between the grids are used and time-integrated
as independent variables. This feature largely improves
numerical accuracy and resolution. Through the Fourier
analyses [5,6] and benchmark tests of the one-dimensional
(1D) and 2D transport simulations, it is found that the MM
scheme exhibits significantly reduced numerical dissipa-
tion and dispersion even near the Nyquist wave-number.
We also applied the MM scheme to a 1D Vlasov-Poisson
simulation and found that it captures finer scale structure
in velocity space compared to the IDO-CF scheme.

This paper has the following outline. In Sec. 2, the nu-
merical procedure of the MM scheme is briefly described.
Then, we perform the Fourier analyses (in Sec. 3) and 1D
(in Sec. 4) and 2D (in Sec. 5) benchmark tests to investi-
gate the numerical properties of the MM scheme. The ap-
plication of the MM scheme to the 1D Vlasov simulation
is discussed in Sec. 6. Finally, the results are summarized
with short remarks in Sec. 7.
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2. Numerical Method of the MM
Scheme
In this section, we describe the principal concept of

the MM scheme based on a numerical procedure to solve
the 1D transport equation, given as

∂ f (t, x)
∂t

+
∂

∂x
[
u f (t, x)

]
= 0 , (1)

where t denotes the time, x the spatial coordinate, u the ve-
locity and f the transported quantity. Here, u is assumed
to be constant. A simulation box is partitioned into cells
x j = jΔx = j Lx/Nx( j = 1, 2, · · · ,Nx), where Lx and
Nx are the spatial periodic length and the number of mesh
points, respectively. Let mM j+1/2 (m = 0, 1,2) be the value
of each moment between x j and x j+1 defined as

0 M j+1/2 =

∫ x j+1

x j

f dx/Δx, (2)

1 M j+1/2 =

∫ x j+1

x j

(x − x j) f dx/Δx2, (3)

2 M j+1/2 =

∫ x j+1

x j

(x − x j)2 f dx/Δx3, (4)

where m corresponds to the order of the moment. The i-
th piece of the interpolation function F j(x) is constructed
over upwind stencils. By considering u < 0, a left-bias
interpolation can be written as

F j(x) = a(x− x j)4+b(x− x j)3+c(x− x j)2+d(x− x j)+e. (5)

By using the five constraints for the interpolation given as

F j(x j) = f j,

F j(x j+1) = f j+1,∫ x j+1

x j

F j(x)dx/Δx = 0M j+1/2,

∫ x j+1

x j

(x − x j)F j(x)dx/Δx2 = 1M j+1/2,

∫ x j+1

x j

(x − x j)2F j(x)dx/Δx3 = 2M j+1/2,

(6)

the polynomial (5) is completely determined and the coef-
ficients are obtained as

a = 35( f j + f j+1 − 120M j+1/2 + 601M j+1/2

− 602M j+1/2)/Δx4,

b = − 20(4 f j + 3 f j+1 − 450M j+1/2 + 2161M j+1/2

− 2102M j+1/2)/Δx3,

c = 30(2 f j + f j+1 − 200M j+1/2 + 901M j+1/2

− 842M j+1/2)/Δx2,

d = − 4(4 f j + f j+1 − 300M j+1/2 + 1201M j+1/2

− 1052M j+1/2)/Δx,
e = f j.

(7)

The time derivatives of the independent values are com-
puted as(
∂ f
∂t

)
j
= −u

∂ f
∂x

∣∣∣∣
x=x j
= −u

∂F j(x)
∂x

∣∣∣∣
x=x j
, (8)

(
∂

∂t
0M

)
j+1/2
= −u

∫ x j+1

x j

∂ f
∂x

dx/Δx = −u
f j+1 − f j

Δx
, (9)

(
∂

∂t
1 M

)
j+1/2
= −u

f j+1 − 0M j+1/2

Δx
, (10)

(
∂

∂t
2 M

)
j+1/2
= −u

f j+1 − 21M j+1/2

Δx
. (11)

According to Eqs. (8-11), we can advance each value
in time by using typical numerical methods such as the
Runge-Kutta scheme. Note that Eq. (9) is expressed in
flux form, so that

∑0
j M j+1/2 becomes constant for all time-

steps. As a result, the present scheme is superior in inves-
tigating the problems that require simulations over a long
time scale.

3. Fourier Analysis of the MM
Scheme
In this section, we present the Fourier analysis [5,6] of

the MM scheme to evaluate stability and accuracy in solv-
ing the 1D transport equation given by Eq. (1). When the
spatial profile of a transported quantity is periodic over a
domain with a uniform grid width, its grid value is decom-
posed into a Fourier series

f n
j =

∑
k

f̂ n(k) exp(ikx j), (12)

where i =
√−1 and k is the wave-number. In the MM

scheme, each moment value is also decomposed as

0 Mn
j+1/2 =

∑
k

0M̂n(k) exp(ikx j)[exp(ikΔx) − 1], (13)

1 Mn
j+1/2 =

∑
k

1M̂n(k) exp(ikx j)[exp(ikΔx) − 1], (14)

2 Mn
j+1/2 =

∑
k

2M̂n(k) exp(ikx j)[exp(ikΔx) − 1]. (15)

In terms of Eqs. (8-11) and Eqs. (12-15), the discretized
form of the time marching by the 4th-order Runge-Kutta
method is written as

Fn+1 = Fn +

4∑
p

βp AFn
pΔt ≡ SFn, (16)

Fn
p = Fn +

4∑
q

αpq AFn
qΔt, (17)

where n and p denote the time-step index and the stage
number of the Runge-Kutta scheme, respectively. αpq and
βp are weighted coefficients given as α21 = α32 = 1/2,
α43 = 1, β1 = β4 = 1/6, β2 = β3 = 1/3 and αpq = 0 for
other components. The matrix Fn and A are given by
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Fig. 1 Phase error of different schemes for the 1D linear trans-
port equation. The red curve corresponds to the MM
scheme, other curves correspond to the 1st-order up-
wind (orange), 3rd-order upwind (green), IDO-CF (blue)
schemes, and ideal phase (black).

Fn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂ n(k)
0M̂ n(k)
1M̂ n(k)
2M̂ n(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (18)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 4C[exp(ikΔx) + 4] −120C 480C −420C
−C[exp(ikΔx) − 1] 1 0 0
−C exp(ikΔx) C 1 0
−C exp(ikΔx) 0 2C 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

where C = |u|Δt/Δx denotes the Courant number. Then,
we obtain the matrix after n time-steps as

Fn = SFn−1 = S2Fn−2 = · · · = SnF0. (20)

To estimate the numerical dissipation and dispersion
of each scheme, we define an amplification factor after n
timesteps as

g(k) = |gn(k)| exp(iθn) =
f̂ n(k)
f̂ 0(k)

, (21)

where |gn| and θn represent the gain and phase, respectively.
The exact solution of the gain is unity, and the exact phase
is θn = CknΔx.

We examine the phase for various upwind schemes
using the 4th-order Runge–Kutta time integration. Fig-
ure 1 shows the phase for the 1st- and 3rd-order upwind,
IDO-CF, and MM schemes. The phase is normalized as
θ̄n = θn/Cn, where the Courant number and the iteration
number are set by C = 0.1 and n = 1000, respectively. It
is found that the MM scheme provides an accurate phase
for a wide range of wave numbers in comparison with the
conventional upwind schemes. Even at the Nyquist wave-
number, the numerical phase error is found to be 3.1405.
The normalized gain, defined as |ḡn| = |gn|1/Cn, is also
shown in Fig. 2. The gains of all schemes are less than
unity for the entire region of the wave number, which en-
sures numerical stability. At the Nyquist wave-number, the

Fig. 2 Gain errors of different schemes for the 1D linear trans-
port equation. The correspondence of each curve is the
same as in Fig. 1.

Fig. 3 Spatial accuracy of the numerical solution for the 1D
transport equation by using the 1st-order upwind (or-
ange), 3rd-order upwind (green), IDO-CF (blue), and
MM schemes (red).

numerical gain error is found to be 0.99537. Thus, the MM
scheme can achieve almost the same gain and phase as the
ideal solutions, exhibiting much less dissipation and dis-
persion than the other schemes.

4. Application to the 1D Transport
Simulation
To check the accuracy of the numerical solution, we

applied the MM scheme incorporated with the 4th-order
Runge-Kutta scheme to the 1D transport simulation, in
which the governing equation is given by Eq. (1). We set
the initial condition as f (t = 0, x) = 2 + sin(2πx) for
0 ≤ x ≤ 1 and the CFL number as C = 0.1. Figure 3
shows the relative numerical error σ of each upwind
scheme, i.e, 1st-order upwind, 3rd-order upwind, IDO-CF,
and MM scheme, where σ is defined as

σ =

Nx∑
j=1

| f Nume
j − f T rue

j |
| f True

j | . (22)

It is found that the error of the MM scheme has a conver-
gence of Δx5, whereas that of the IDO-CF scheme is Δx3.
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This accuracy corresponds to the order of the integral for
each interpolation function. We also found that the MM
scheme can achieve the same accuracy at approximately
one-order smaller numerical cost.

5. Application to the 2D Transport
Simulation
We also applied the MM scheme to the 2D linear

transport simulation, in which the governing equation is
given by

∂ f (t, x, y)
∂t

+
∂

∂x
[u(x, y) f (t, x, y)]

+
∂

∂y
[v(x, y) f (t, x, y)] = 0. (23)

First, we test the case with uniform velocity u(x, y) =
v(x, y) = 1. The initial condition is set as

f (t = 0, x, y) = 2 + sin(2πx) sin(2πy). (24)

Figure 4 shows the relative numerical error σ of each up-
wind scheme, i.e, 3rd-order upwind, IDO-CF and MM
scheme. It can be seen that the MM scheme has a con-
vergence of Δx4.

We also test the 2D solid-body rotation problem called
the Zalesak problem [7]. The solid body, whose initial pro-
file is shown in Fig. 5 (a), rotates with the velocity field

given by u(x, y) = −2πy, v(x, y) = 2πx. All the computa-
tional conditions are assumed to be the same as those in
Ref. [7]. Figure 5 (d) shows the profile after 10 complete
revolutions with the MM scheme. For comparison, the
numerical results with the 3rd-order upwind and IDO-CF
schemes are also shown in Fig. 5 (b) and (c), respectively.
We can see that the MM scheme gives a less diffusive result
for the Zalesak problem.

Fig. 4 Spatial accuracy of the numerical solution for the 2D
transport equation by using the 3rd-order upwind (green),
IDO-CF (blue), and MM schemes (red).

Fig. 5 Contour view of (a) the solid-body in the Zalesak problem after 10 anticlockwise rotations simulated by using the (b) 3rd-order
upwind, (c) IDO-CF and (d) MM schemes. Here, 100× 100 mesh number and velocity field u(y) = −2πx, v(x) = 2πy are assumed.
Grid points inside the cylinder have f = 2.0. All others have f = 1.0.

2401097-4



Plasma and Fusion Research: Regular Articles Volume 6, 2401097 (2011)

Fig. 6 Deviation from the initial values of the entropy defined
as S n = −∑

i, j f n
i, j ln f n

i, jΔxΔv by the IDO-CF and MM
schemes with Nv = {1024, 2048}.

6. Application to the 1D Vlasov-
Poisson Simulation
Finally, we applied the MM scheme to the 1D Vlasov-

Poisson simulation, which has 1D in real space and 1D in
velocity space. Let us consider the normalized 1D Vlasov-
Poisson equations as

∂ f
∂t
+ v
∂ f
∂x
+
∂φ

∂x
∂ f
∂v
= 0, (25)

∂2φ

∂x2 =

∫ +∞

−∞
f dv − 1, (26)

where f and φ denote the distribution function for elec-
trons and the electrostatic potential, respectively; station-
ary background ions are assumed. The computational do-
main is defined in 0 ≤ x ≤ Lx and −vmax ≤ x ≤ vmax

with a periodic boundary condition in the x-direction and
is discretized by numerical grid points of (Nx,Nv − 1).

Here, we investigate a benchmark test for nonlinear
Landau damping with the initial condition

f (t = 0, x, v) =
1

2π
exp

(
− v

2

2

) (
1 + A cos

2π
Lx

x
)
, (27)

where Lx = 4π, vmax = 10, Nx = 128, Δt = 5 × 10−4, and
perturbation amplitude A = 0.5. This test has been studied
in literature [4] as a fundamental test of the collisionless
Landau damping and subsequent nonlinear evolution of the
electrostatic field dominated by wave–particle interactions.

In this study, we apply the MM scheme only in the
v-direction to check the velocityspace resolution. In this
case, the 0th-, 1st-, and 2nd-order moment variables corre-
spond to the low-order discretized velocity moments, i.e.,
density, momentum and energy. They can reproduce the
higher-order velocity moments balancing the transport flux
in the quasi-steady state [8].

Figure 6 shows the deviation from the initial values
of the entropy defined as S n = −∑

i, j f n
i, j ln f n

i, jΔxΔv by
the IDO-CF and MM schemes. It is important to con-
sider the velocityspace resolution of each scheme so that
the mesh number in the v-direction can be changed as

Fig. 7 Contour plots of the distribution function in phase space
at t = 400 by the (a) IDO-CF scheme with Nv = 2048
and (b) MM scheme with Nv = 1024. Note that both
cases have the same memory.

Nv = {1024, 2048}. It is found that the typical time scale
in which S begins to increase and also saturates is delayed
by the MM scheme. Note that the IDO-CF scheme with
Nv = 2048 has the same memory as the MM scheme with
Nv = 1024; however, the increase of entropy becomes
faster in the former case. This demonstrates that the MM
scheme captures the finer scale structure in velocity space
as is also observed in the contour plots of the distribution
function shown in Fig. 7.

On the other hand, the MM scheme has the same to-
talenergy error level as the IDO-CF scheme. This origi-
nates from the fact that the error of the totalenergy is the
most sensitive to Δx, which determines the resolution of
the Poisson solver. Such a tendency is similar to that ob-
served in Ref. [4].

7. Conclusion
In this paper, we have explored the MM scheme,

which is an extension of the IDO-CF scheme, for solv-
ing the Vlasov-Poisson system. We have investigated the
numerical properties of the MM scheme using the Fourier
analyses and some benchmark tests of the 1D and 2D linear
transport simulations. We found that both gain and phase
of the MM scheme agree well with the ideal values up to
the Nyquist wave number. We found that the MM scheme
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can obtain less-dissipative and less-dispersive numerical
results. The 1D Vlasov-Poisson simulations showed that
the MM scheme captures the finer scale structure in veloc-
ity space, while also maintaining good energy conserva-
tion. These tests also showed that the MM scheme can be
potentially extended to more realistic simulation such as
gyrokinetic Vlasov simulation [1] which will be reported
in a future publication.
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