
Plasma and Fusion Research: Regular Articles Volume 6, 2401075 (2011)

Acceleration of PIC Simulation with GPU∗)

Junya SUZUKI, Hironori SHIMAZU1), Keiichiro FUKAZAWA2) and Mitsue DEN3)

Department of Information System Fundamentals, The University of Electro-Communications, Chofu 182-8585, Japan
1)Keihanna Research Laboratories, National Institute of Information and Communications Technology,

Soraku-gun 619-0289, Japan
2)Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581, Japan

3)National Institute of Information and Communications Technology, Koganei 184-8795, Japan

(Received 7 December 2010 / Accepted 24 March 2011)

Particle-in-cell (PIC) is a simulation technique for plasma physics. The large number of particles in high-
resolution plasma simulation increases the volume computation required, making it vital to increase computation
speed. In this study, we attempt to accelerate computation speed on graphics processing units (GPUs) using
KEMPO, a PIC simulation code package [H. Matsumoto and Y. Omura, Computer Space Plasma Physics, pp.21-
65 (1985)]. We perform two tests for benchmarking, with small and large grid sizes. In these tests, we run
KEMPO1 code using a CPU only, both a CPU and a GPU, and a GPU only. The results showed that performance
using only a GPU was twice that of using a CPU alone. While, execution time for using both a CPU and GPU
is comparable to the tests with a CPU alone, because of the significant bottleneck in communication between the
CPU and GPU.
c© 2011 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: numerical simulation, particle-in-cell method, graphics processing units, high-performance comput-
ing, OpenMP

DOI: 10.1585/pfr.6.2401075

1. Introduction
In general, there are two plasma simulation methods:

grid and particle. In this study we use a particle method
called a particle-in-cell (PIC) simulation, in which elec-
trons and ions are treated as particles, and electromagnetic
fields are grid values. This method is then utilized for
superior microscopic analysis compared to grid methods.
It does, however, have a disadvantage in the much larger
volume of computation required because of the numerous
calculation points on the number of particles. To obtain
statistical accuracy in the plasma simulation, an order of
1000 particles is required for one grid, but this large num-
ber increases the volume of computation. Consequently, it
is important to raise computation speed. This study seeks
to accelerate computation speed on Graphics Processing
Units (GPUs) using KEMPO1 [1], a PIC simulation code
package.

GPUs have been developed as image processing chips,
but recently they are begun to be used as new computa-
tional resources since they offer high computational and
cost performance. The theoretical calculation performance
of some GPUs exceeds 1TFLOPS for a single GPU, which
is very high compared to CPUs. A GPU has several hun-
dred operation cores on a single chip. The ideal parallel
computing with these cores contributes to the high theo-
retical calculation performance. In addition, CUDA [2],

author’s e-mail: junya@hpc.is.uec.ac.jp
∗) This article is based on the presentation at the 20th International Toki
Conference (ITC20).

the GPU development environment, makes GPU program-
ming easier.

Enabling high-performance computing using GPUs
should also mean that the computation is done at low cost.
GPUs, however, have only recently begun to be used in nu-
merical calculations and the performance attainable when
executing an actual application on a GPU is not known.

In this study, we examine the performance of
KEMPO1 code on a GPU with CUDA.

2. KEMPO1 Algorithm
In KEMPO1, the following equations are solved.

First, Maxwell’s equations are written as

∇ × B = μ0 J +
1
c2

∂E
∂t
,

∇ × E = −∂B
∂t
,

where B, E, J , c, and μ0 are the magnetic field, electric
field, current density, speed of light, and magnetic perme-
ability, respectively.

The equation of motion for particles is then

du
dt
=

q
m

(E + u × B),

where q, m, and u are the charge, mass, and velocity of
particles, respectively. The initial condition is given by the
Poisson equation,

∂Ex

∂x
=
ρ

ε0
,

c© 2011 The Japan Society of Plasma
Science and Nuclear Fusion Research

2401075-1



Plasma and Fusion Research: Regular Articles Volume 6, 2401075 (2011)

∂Bx

∂x
= 0,

where ρ and ε0 are the charge density and electric permit-
tivity, respectively.

These equations are solved with leap-frog time inte-
gration. The calculation sequence is as follows: First, the
magnetic field is obtained by solving Maxwell’s equations
and the equation of motion for particles is solved using
the value of electromagnetic field assigned to the grids.
We then update the particle positions, calculate the current
density by using the particle information, and obtain the
magnetic field and electric field. These processes consti-
tute one step. Time integration is performed by repeating
the processes, and we advance the simulation.

One time step of KEMPO1 comprises the following
five main functions:
BFIELD: calculates the magnetic field
VELCTY: calculates the particle velocities
POSITN: updates the particle positions
CURRNT: calculates the current density at the grids
EFIELD: calculates the electric field

The VELCTY function obtains the particle velocity by
using the value of the electromagnetic field assigned to the
grids. This process occupied more than 50 percent of the
total calculation time on the CPU. The POSITN function
then updates the position of the particles called twice in
one step. This process occupies about 10 percent of the
total calculation time on the CPU. The CURRNT function
calculates the current at the grids based on the physical
quantities of particles. This process occupies more than 35
percent of the total calculation time on the CPU.

For CURRNT, it is necessary to gather the particles’
physical quantities into the grids. This method generally
handles many more particles than there are grids, and so
requires a reduction operation in parallel computing [3].
In the GPU, the degree of parallel computing is large be-
cause of the large number of threads described in sec. 3,
and bottlenecks on the GPU. Moreover, there is frequent
random memory access since the particles are constantly
moving. This random access must be avoided, since it is
extremely slow on the GPU [4].

The EFIELD function calculates the electric field and
BFIELD calculates the magnetic field. These processes
occupy less than one percent of the total volume of calcu-
lations on the CPU.

The calculation of particles occupies a large percent-
age of the total calculation and is independent, so it can be
computed in parallel. This should accelerate this calcula-
tion on the GPU.

3. Implementation of KEMPO1 on
GPU
On a GPU the maximum number of threads that can

be created simultaneously is in the order of 1012, which
is larger than the number for the physical computing core.
Therefore, threads can be changed readily. In this study,

Fig. 1 CURRNT on GPU

then, we perform a calculation of particles with a large
number of threads, in which each thread manages multi-
ple particles. To calculate the grids, we create the same
number of threads as there are grids.

With CUDA, it is relatively easy to translate the func-
tions of BFIELD, VELCTY, POSITN, and EFIELD on
the CPU to the GPU. However, it is difficult to translate
the CURRNT function on the CPU to the GPU. Thus, as
mentioned above, a bottleneck in the CURRNT calculation
forms on the GPU.

In the CURRNT process, random memory access and
data conflicts occur frequently, as shown in Fig. 1. With
several hundred cores of GPU in fine-grained parallel com-
puting and the shared memory of the GPU architecture,
calculation of the current density on the grids must be han-
dled with care when using the particle information.

There are two issues making the CURRNT process on
a GPU slower than it is on a CPU:
(1) Random memory access using the grid information
(2) Frequent synchronization for exclusive control pre-

vented because of data conflict among threads
The delay caused by (1) can be improved by conduct-
ing calculations on high-speed memory of 16 KB in each
block, which is shared memory. In (2), unexpected over-
head occurs because the GPU handles a larger number of
threads than other parallel computing. We assign multi-
ple arrays for the grid data of the simulation domain on the
shared memory, so that each thread that calculates simulta-
neously can access these separated arrays. Thus, data con-
flict among many threads can be avoided without synchro-
nization. However, because the shared memory’s volume
is very small, the arrays of all grid data cannot be assigned
for each thread, or else we would not be able to store all
grid information in it.

We therefore introduce the domain decomposition
method, which is frequently used in parallel computing.
By dividing the domain to reduce information on the grids,
we can use the shared memory on the GPU.

First, we divide the one-dimensional domain. Figure 2
shows that the domain is divided into three parts. The parti-
cles are also divided by the domain where they exist. Then,
on the GPU, the processes of each divided domain are per-

2401075-2



Plasma and Fusion Research: Regular Articles Volume 6, 2401075 (2011)

Fig. 2 Domain decomposition method on GPU

Fig. 3 Sum of current density on GPU

formed sequentially and the current density in each divided
domain is obtained. Finally, we join the domains and ob-
tain the current density in the whole domain.

Here, the process of the sum of current density in the
divided domain is described in Fig. 3. In the block, the sum
of the current density to which each particle contributes is
calculated on the shared memory. We then sum the current
density in each block and so obtain the current density in
the divided domain by summing up those in each block.

On the calculation in the block, we also assign mul-
tiple arrays for the current density of the divided domain
on the shared memory. The same number of threads as
for these arrays can access a corresponding array without
synchronization, so that we can reduce the frequent syn-
chronization. These arrays are then summed. As a conse-
quence, the size of the divided domain becomes very small.

We also take the larger area compared to the divided
area, so that the adjacent domains overlap. Thus, we can
keep the grouping of particles to once every few dozen
steps, as opposed to every step without overlapping region.
The process of grouping particles is unsuitable for the GPU
since the branch process and many instructions for replace-
ment of the particle data occur in the device memory. Im-
plementation also becomes complicated, so in this study
we execute the program for these parts on the CPU.

4. Results
In the tests conducted in this study, we perform two

cases of benchmarking with a small and large grid number.
In these two cases, we run the KEMPO1 code using only a
CPU, both a CPU and GPU, and only a GPU, respectively.
Thus there are a total of six runs.

Here, in the implementation using both the CPU and
GPU, we run only the CURRNT function on the CPU and
the other functions on the GPU. We expect to easily speed
up the program without using a complicated algorithm to
optimize it for the GPU. However, since the CPU and GPU
have separate memory, it is necessary to transfer data be-
tween them at every step.

For the test environment, we used a CPU with an In-
tel Xeon X5550 and a GPU with an NVDIA Tesla C1060
on the same server. Their theoretical calculation perfor-
mances are 43.56 × 4 TFLOPS and 933 TFLOPS, respec-
tively. The size of the main memory is 74 GB on this server
and the GPU has 4 GB of device memory. For the CPU we
used four cores and performed parallel computation with
OpenMP. For the GPU, we used CUDA. Here, we mea-
sured the execution time of the five main functions of the
KEMPO1 code: VELCTY, POSITN, CURRNT, EFIELD,
and BFIELD. In the small size there are 128 grids, and the
large size has 8192. The number of particles per grid is
10,000. The memory needed depends on the number of
particles. For the small size, 20 MB is needed; while for
the large size case, 1.2 GB is required. Here each divided
domain has 32 grid points in all calculation cases. That is,
in the small grid calculation case (128 grid points), the en-
tire domain is divided by 4, and in the large case (8192),
it is divided by 256. We also define each block as having
256 threads. The number of blocks is altered by changing
the number of particles.

Figure 4 shows the results for the case of the small
grid number.

Performance, the reciprocal run time number, using
only the GPU is twice that using the CPU alone. On the
other hand, run with both the CPU and GPU is slower than
that with the CPU alone because of the large overhead,
which is attributable to the communication time between
the CPU and GPU. In the run with the GPU alone, over-
head is attributable to the computing time for division of
the area per step and the communication time between the
CPU and GPU.

The performance of VELCTY and POSITN with only

2401075-3



Plasma and Fusion Research: Regular Articles Volume 6, 2401075 (2011)

Fig. 4 Results of small grid number (128)

the GPU is also five times that using the CPU alone. The
performance of CURRNT with only the GPU is 1.5 times
that using the CPU alone. The run of VELCTY with both
the CPU and GPU is slower than that with the CPU alone.
This is because we do not optimize part of the code pro-
cessed on the GPU. To utilize the GPU’s shared memory,
the algorithm needs to be changed substantially.

Figure 5 shows the results for the large grid number.
The performance for the large grid number is the same as
that for the small number, so we expect that the perfor-
mance for the higher dimensional case is the same on the
GPU.

5. Summary
This study confirmed that the performance of

KEMPO1 code, which is used for PIC plasma simulation,
with a GPU is twice as fast for both small and large grid
numbers compared to that with a CPU using four cores.

In these two cases, performance using both a CPU

Fig. 5 Results of large grid number (8192)

and GPU is lower than that using a CPU alone. Optimiza-
tion for a GPU is essential, and the algorithm needs to be
changed radically. This makes it difficult to obtain high-
performance computation using both a CPU and GPU.

Acceleration is possible with a GPU. It is important to
devise an algorithm to make it suitable for calculation us-
ing a GPU architecture, which has trouble obtaining high
performance on the GPU, such as with the CURRNT func-
tion. The shared memory on the GPU must be utilized.

[1] H. Matsumoto and Y. Omura, Computer Space Plasma
Physics, pp.21-65 (1985).

[2] NDVIA CUDA programming guide 1.1, http://developer.
download.nvidia.com/compute/cuda/1 1/NVIDIA CUDA
Programming Guide 1.1.pdf.

[3] Y. Akiyama et al., Information Processing Society of Japan
66, 1 (1997).

[4] G. Stantchev et al., Journal of Parallel and Distributed Com-
puting 68, 1339 (2008).

2401075-4


