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Possibility of the accuracy improvement in the permanent magnet method for measuring the critical current
density of a high-temperature superconducting (HTS) thin film has been investigated numerically. To this end, a
numerical code has been developed for analyzing the shielding current density in an HTS sample. By using the
code, the permanent magnet method has been reproduced numerically. The results of computations show that, by
using the magnet strength BF as large as possible, the high accuracy can be assured with little effort. Furthermore,
in order to improve the measurement accuracy of the critical current density near the film edge, it is necessary to
use the magnet with the smallest radius.
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1. Introduction
As is well known, flywheel systems and fusion reactor

systems have been developed with high-temperature super-
conductors (HTSs), and HTS materials have various char-
acteristic parameters. Especially, a critical current density
jC is one of the most important parameters of the HTS.
Therefore, it is necessary to accurately measure the critical
current density jC in an HTS sample.

The standard four-probe method has been generally
used for measuring a critical current density jC of the HTS
sample. However, this method may leads not only to the
destruction of a sample surface but also to the degradation
of superconducting characteristics. For this reason, a non-
contact method has been so for desired for measuring the
critical current density. Currently, the popular method is
the inductive method proposed by Claassen et al. [1].

As a novel noncontact method for measuring jC,
Ohshima et al. proposed the permanent magnet method
for measuring the critical current density jC in a HTS thin
film [2, 3]. While moving a permanent magnet placed
above an HTS thin film, they measure an electromagnetic
force acting on the film. Consequently, they found that the
maximum repulsive force FM is roughly proportional to
the critical current density jC. This means that jC can be
estimated by measuring FM. Recently, jC-distributions are
evaluated by using this method [4].

In order to numerically reproduce the permanent mag-
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net method, a numerical code has been developed by an-
alyzing the time evolution of a shielding current density
in the HTS thin film [5]. By using the code, the results
of computations indicate that the measurement accuracy is
degraded near the HTS film edge. However, it is found that
the maximum repulsive force is roughly proportional to the
critical current density jC [5] near the film edge. In con-
clusion, the critical current density jC near the film edge
can be estimated from the proportionality constant deter-
mined in advance from the resulting jC-FM line. However,
the determination of proportionality constant wastes time
because it is necessary to calculate the proportionality con-
stants as a function of the magnet position. Therefore, the
accuracy improvement is desired near the film edge.

The purpose of the present study is to investigate the
possibility of the accuracy improvement by changing the
operating conditions in the permanent magnet method.

2. Governing Equations
In Fig. 1, we show a schematic view of a permanent

magnet method. A cylindrical permanent magnet of the
radius rm and the height hm is placed above a square-
shaped HTS thin film of the length a and the thickness
b. Furthermore, we adopt the Cartesian coordinate system
〈O : ex, ey, ez〉, where z-axis is the thickness direction, and
the origin O is the centroid of an HTS film.

A distance L between a magnet bottom and a film sur-
face is controlled as follows:

1. From L = Lmax to L = Lmin, the magnet is moved to
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Fig. 1 A schematic view of a permanent magnet method.

the film at the constant speed v = (Lmax − Lmin)/τ0.
Here, τ0 is a constant.

2. From L = Lmin to L = Lmax, the magnet is moved
away from the film at the same speed v.

For determining a magnet strength, we adopt a magnetic
flux density BF at for the case with L = Lmin and (x, y, z) =
(0, 0, b/2). In addition, the xy-coordinates the magnet cen-
ter is defined by (xm, ym).

As usual, we assume that the thin-layer approxima-
tion [6]: since the thickness of the HTS is sufficiency thin,
a shielding current density can hardly flow in the thick-
ness direction. In the following, an HTS film cross-section
passing through z = const. and its boundary are denoted by
Ω and ∂Ω, respectively.

Under the above assumptions, a shielding current den-
sity in an HTS is written as j = (2/b)∇S × ez, and the
behavior of the scalar function S (x, t) is governed by the
following integro-differential equation [6]:

μ0
∂

∂t

[∫
Ω

d2x′Q
(∣∣∣x − x′

∣∣∣) S (x′, t) + 2
b

S (x, t)
]

+
∂

∂t
〈B · ez〉 + (∇ × E) · ez = 0. (1)

Here, x is defined by x ≡ xex + yey. In addition, am angle
brackets 〈 〉 are an average operator over the thickness of
the HTS, and it is given by

〈 f 〉 ≡ 1
b

∫ b/2

−b/2
f dz. (2)

Incidentally, the explicit form of a function Q(x, x′) is de-
scribed in Ref. [6].

The shielding current density j is closely related to
the electric field E. The relation is expressed by the J-E
constitute equation: E = E(| j|)[ j/| j|]. As a function E( j),
we use the power law: E( j) = EC[ j/ jC]N , where EC is a
critical electric field and N is a constant.

For the initial and boundary conditions to (1), we as-
sume S = 0 at t = 0 and S = 0 on ∂Ω. By solving the
initial-boundary problem of (1), we can obtain the time
evolution of a shielding current density. Throughout the
present study, the physical and geometric parameters are
fixed as follows: a = 40 mm, b = 200 nm, ym = 0 mm, hm

= 3 mm, τ0 = 39 s, Lmax = 20 mm, Lmin = 0.5 mm, EC =

0.1 mV/m, and N = 20.

Fig. 2 Dependence of the electromagnetic force Fz on the dis-
tance L for the case with xm = 0 mm, rm = 2.5 mm, BF =

0.2 T, and jC = 4.5 MA/cm2.

3. Numerical Results
In order to simulate the permanent magnet method, a

numerical code has been developed for solving the initial-
boundary problem of (1). The code can be executed by
specifying an assumed critical current density jC. In the
present study, we use the assumed value, 0.1 MA/cm2 ≤
jC ≤ 10 MA/cm2, where the assumed values of jC derives
from Ohshima’s experimental results [2, 3].

In Fig. 2, we show the dependence of the electromag-
netic force Fz on the distance L. We see from this figure
that the Fz has a hysteresis curve. A repulsive force is act-
ing on the film for 0 ≤ t ≤ τ0, whereas an attractive force
occurs for τ0 < t ≤ 2τ0. By extrapolating the repulsive
force, we can evaluate the electromagnetic force at L = 0
mm (see Fig. 2). Hereafter, this force is called the maxi-
mum repulsive force, and it is denotes by FM.

3.1 Influence of magnet strength on accu-
racy

Let us first investigate the influence of the relation be-
tween the critical current density jC and the maximum re-
pulsive force FM for the various strength BF. In Fig. 3, we
indicate that the dependence of the critical current density
jC on the maximum repulsive force FM. We see from this
figure that, when the magnet strength is BF = 0.01 T and
0.03 T, the proportional relations between jC and FM do
not hold for the case with a high jC. The reason is as fol-
lows: in order to hold the proportional relation between jC
and FM, an inequality Max

x∈Ω
| j(x)|/ jC ≥ 1 must be satisfied

numerically. In other words, the magnetic shielding of the
HTS is broken down and, simultaneously, the HTS has the
normal conducting state. The results of the computations
show that, for BF = 0.01 T and 0.03 T, the inequality is not
satisfied. On the other hand, jC is almost proportional to
FM for the case with jC � 3.0 MA/cm2 for each BF. As
a result, for jC � 3.0 MA/cm2, a proportionality constant
can be obtained even when the magnet strength BF is low.

In the present study, a proportionality constant is de-
termined from jC-FM line for jC ≤ 1.0 MA/cm2 by using
the least-square method. Therefore, an estimated formula
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Fig. 3 Dependence of the critical current density jC on the max-
imum repulsive force FM for the case with xm = 0 mm
and rm = 2.5 mm. Here, the solid lines show the estimated
value of the critical current density j∗C.

Fig. 4 Dependence of the relative error ε on the maximum re-
pulsive force FM for the case with xm = 0 mm and rm =

2.5 mm.

of the critical current density jC can be defined as

j∗C ≡ K(BF, rm)(MA· cm−1· gf)(FM/b), (3)

where K is the proportionality constant.
Next, in order to quantitatively examine the differ-

ence between j∗C and jC, we define a relative error: ε ≡
| j∗C − jC |/| jC|. In Fig. 4, we show that the dependence of
the relative error ε on the maximum repulsive force FM.
We see from this figure that the relative error ε increases
with FM/b. In particular, the relative error ε drastically in-
creases with decreasing BF. From these results, we assume
that there exists the limit of the jC-measurement for each
BF.

Finally, we investigate the limit of the maximum re-
pulsive force FM. For this purpose, we use the acceptable
error εa = 1.5 % (see Fig. 4) and, subsequently, we deter-
mine the limit of the maximum repulsive force F∗M from εa.
In Fig. 5, we indicate the limit of the maximum repulsive
force F∗M on the magnet strength BF. From this result, this
figure can serve as a guide to the measurement accuracy
jC in the permanent magnet method. In fact, if a mea-
sured FM for a certain BF satisfy the inequality FM ≤ F∗M,
the accuracy with ε ≤ 1.5 % is assured. For the case with
FM > F∗M, it is only necessary to remeasure FM by chang-
ing the strength BF. We conclude that, by using the mag-

Fig. 5 Dependence of the limit of maximum repulsive force F∗M
on the magnet strength BF for the case with xm = 0 mm
and rm = 2.5 mm.

Fig. 6 Dependence of the relative error εr on the magnet position
xm.

net strength BF as large as possible, the high accuracy can
be assured with little effort. However, it is found that, by
changing the strength BF, the accuracy improvement near
the film edge cannot be achieved.

3.2 Accuracy improvement
In this subsection, we investigate whether the radius

rm of the magnet affect the measurement accuracy of the
critical current density jC. To this end, we assume that an
HTS film has a uniform jC-distribution, and jC and BF is
fixed as jC = 4.5 MA/cm2 and BF = 0.3 T, respectively.
Therefore, the proportional relation between jC and FM is
given by

jNC = α(rm)(MA· cm−1· gf)(FM/b). (4)

For the parameters in the present study, the proportional-
ity constants are α (1.5 mm) = 1.82 × 10−8; α (2.5 mm) =
8.23 × 10−8; α (3.5 mm) = 4.64 × 10−9; α (4.5 mm) = 2.91
× 10−9. By substituting the resulting maximum repulsive
force FM into (4), an estimated value of the critical current
density is determined.

Let us investigate the influence of the radius rm on the
accuracy. As a criterion of the accuracy, we define a rela-
tive error: εr ≡ | jNC − jC|/| jC|. In Fig. 6, we show the depen-
dence of the relative error εr on the magnet position xm for
the various radius rm. This figure indicates that the relative
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Fig. 7 The spatial distributions of the magnetic flux density 〈Bz〉
for the case with xm = 0 mm.

Fig. 8 The spatial distributions of the shielding current density
for the case with xm = 17 mm.

error εr increases with the magnet position xm. Moreover,
εr decreases with rm for xm � 19 mm (e.g. for the case
with xm = 17 mm, the relative error is εr = 19.7 % for rm =

1.5 mm; εr = 36.5 % for rm = 4.5 mm). Consequently, the

measurement accuracy of jC near the film edge improves
by using a smaller radius rm.

Let us numerically investigate why the measurement
accuracy of jC degrades remarkably. In Fig. 7, we show the
spatial distributions of the magnetic flux density 〈Bz〉 for
the various radius rm. Here, r denotes the r-coordinate for
the cylindrical coordinate (r, θ, z). This figure shows that
the applied area of the magnetic flux density 〈Bz〉 decreases
with the radius rm. As a result, the area of the shielding
current density decreases with radius rm (see Fig. 8). This
figure shows that, for rm = 1.5 mm, the distribution the
shielding current density almost has axisymmetric. On the
other hand, for rm = 4.5 mm, j has the strongly nonax-
isymmetric distribution, because an HTS edge significantly
affects the distribution of j. Consequently, in order to en-
hance the measurement accuracy of jC near the film edge,
it is necessary to use the magnet with the smallest radius.

4. Conclusion
We investigate the possibility of the accuracy im-

provement by changing the operating conditions. Conclu-
sions obtained in the present study are summarized as fol-
lows:

1. By using the magnet strength BF as large as possible,
the high accuracy can be assured with little effort. As
a result, it may be possible to reduce the time for mea-
suring the critical current density jC.

2. In order to enhance the measurement accuracy of jC
near the film edge, it is necessary to use the magnet
with the smallest radius.
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