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A new method for estimating the wavenumber of a standing wave system by using three Langmuir probes
is proposed. Analytical formulae are derived from a simple model in which two waves of the same frequency
and the same wavenumber propagate in opposite directions. The proposed method can estimate the wavenumber
correctly even if the two waves have equal amplitude.
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1. Introduction
An understanding of the mechanisms that form turbu-

lent structure in magnetized plasma [1, 2] is important for
reducing turbulence-driven transport. Much effort has been
made to observe the spatio-temporal structure of fluctua-
tions. Fluctuations azimuthally propagating in the electron
and ion diamagnetic directions can coexist in a plasma.
When two waves of the same frequency propagate in op-
posite directions, a standing wave can arise as a result of
the interference between them. The standing wave appears
in the edge region of the plasma because of wave reflection
at the plasma boundary. In addition, zonal flows oscillate
as a standing wave in the radial direction [3–7]. The con-
ventional two-point measurement cannot identify a stand-
ing wave in principle. A multi-piont simultaneous mea-
surement, such as that by a 64-channel Langmuir probe
array [8, 9], can detect fluctuations with various wavenum-
bers even if they include standing waves. However, multi-
point measurement is not always realized because of its
accessibility to plasmas. In this report, we propose a con-
venient new method for estimating the wavenumber in a
standing wave system by using the least number of fluctu-
ation measurements. Detection of standing waves can lead
to a better understanding of the spatial structure of fluctua-
tions and its nonlinear coupling in wavenumber space [10].
The new method is validated by test data, and its limita-
tions are discussed.

2. Three-Point Measurement
We propose a three-point measurement aligned along
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the wave propagation direction. We consider a one-
dimensional standing wave system in which two waves
propagating in the +x and −x directions are called the for-
ward and backward waves, respectively. The amplitude of
the propagating waves is written as,

ψ(x, t) = Af cos(ωt − kx − φf)

+ Ab cos(ωt + kx − φb), (1)

where x and t are the position and time, respectively. The
wave propagates with the wavenumber ±k and oscillates
with an angular frequency ω, and Af , Ab and φf , φb repre-
sent the amplitude and initial phase of each wave, respec-
tively. The variables x, t, k, and ω are nondimensional and
can have arbitrary units. A standing wave appears when
Af , Ab � 0. The values of k, Af , and Ab determine the
spatial characteristics of the standing wave. The values of
φf and φb determine the locations of nodes and antinodes,
respectively. Here, we aim to estimate k, Af , and Ab.

The waves observed at each probe position xl are
given as

ψ(xl, t) = Ψl cos(ωt − θl), l = 1, 2, 3, (2)

where Ψl is the amplitude of the wave at each probe (ob-
tained from the auto power spectrum S l as Ψ2

l ∝ S l), and
θl is the initial phase. The measurement setup and the typ-
ical test fluctuation field are shown in Fig. 1. Here, the test
data contains white Gaussian noise. When three probes are
aligned at the same interval Δx, Eqs. (1) and (2) yield the
phase relationship among them, as below:

Ψ1 sinΔθ12 = Ψ3 sinΔθ23, (3)
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where Δθlm is the cross phase between two probes indi-
cated by subscripts l and m. The wavenumber is derived
as

cos kΔx =
Ψ1 cosΔθ12 + Ψ3 cosΔθ23

2Ψ2
. (4)

The amplitudes of the two waves are written as

A2
f =

Ψ2
1 + Ψ

2
2 − 2Ψ1Ψ2 cos(kΔx − Δθ12)

4 sin2 kΔx
(5)

and

A2
b =

Ψ2
1 + Ψ

2
2 − 2Ψ1Ψ2 cos(kΔx + Δθ12)

4 sin2 kΔx
. (6)

We can thus estimate k, Af , and Ab from Ψ1, Ψ2, Ψ3, Δθ12,
and Δθ23, which can be obtained using spectrum analysis
for each probe. In the simplest case R = Ab/Af = 0 (i.e.
a pure propagating wave), conditions Af = Ψ1 = Ψ2 = Ψ3

and Δθ12 = Δθ23 are satisfied. Using these conditions,
Eq. (4) yields k = Δθ12/Δx. This is identical to the align-
ment used to estimate the wavenumber by the two-point

Fig. 1 (a) Typical configuration of three probes, (b) contour of
test data for standing wave system, and (c) time evolu-
tion data from the three probes. Frequency of f = 2.0
( f = ω/2π), wavenumber of k = 20, and amplitude ra-
tio of R = Af/Ab = 0.6 are given. Initial phase differ-
ence is given as φf − φb = π/2. White Gaussian noise
with a signal-to-noise (S/N) ratio (defined by the fluctua-
tion power rate of signal to noise) of 500 is added. Three
probes are fixed at x = 0, 0.04, and 0.08.

measurement. Another simple case is R = 1 (i.e. a pure
standing wave). Using a condition of Δθ12 = Δθ23 = 0,
Eq. (4) can be written as cos kΔx = (Ψ1 + Ψ3)/2Ψ2.

3. Tests of the Method
We checked the validity of our method using test data.

The wavenumber ktest, the amplitude ratio Rtest = Ab/Af ,
and the signal-to-noise (S/N) ratio of the test data were
varied. The probe spacing Δx was also varied. First, we
applied our method to the simplest cases, Rtest = 0.0 and
1.0; the results are shown in Fig. 2 (a). In the region of
Δx > λtest/2, wavenumber estimation failed because λtest

was smaller than the spatial resolution of this probe sys-
tem. The wavenumber was correctly estimated in both
the cases. A relatively large error appeared for the case
Rtest = 1.0, 2Δx = 0.5λ, where one of the nodes of the
standing wave was located at a probe position. In experi-
ments, the node seldom appears because the condition of
0.0 < R < 1.0 is most likely to be obtained. Our method
provided a correct k value even when k and R were varied
over wide ranges, as shown in Figs. 2 (b) and (c).

Figure 3 shows the effect of noise for the estimated
value of k. A larger wavenumber is estimated when the
S/N ratio is small for 2Δx/λtest = 0.255. On the other hand,

Fig. 2 Results of tests of the proposed method in the simplest
cases, (a) Rtest = 0.0 and 1.0, where Fourier transform
analysis is applied using a time window of 2.00, and 30
time ensembles are averaged. Numerical stability of the
proposed method with respect to (b) k and (c) R. White
Gaussian noise with S/N ratio of 500 is added in all tests.
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the estimated wavenumber is almost correct even if the S/N
ratio is small for 2Δx/λtest = 0.509 and 0.764. The appro-
priate probe spacing is limited when the S/N ratio is small,
that is, when S/N < 0.1.

To determine the cause of the estimation error (i.e. a
larger wavenumber is estimated when the S/N ratio is small
in Fig. 3), we show each term in Eq. (4) (Ψ1, Ψ2, Ψ3, Δθ12,
and Δθ23) as a function of the S/N ratio. Figures 4 (a) and
(b) show Ψ1, Ψ2, and Ψ3, and Figs. 4 (c) and (d) show Δθ12

and Δθ23 (error bars represent the standard deviations of
the cross phase). In these figures, the left and right columns

Fig. 3 Estimated wavenumbers as a function of S/N ratio, where
ktest = 40 and Rtest = 0.5. Time window and the num-
ber of ensembles are 0.50 and 240, respectively. The
wavenumber error bar is the standard deviation of 60 es-
timation trials.

Fig. 4 Results of spectral analysis of test data used in Fig. 3 as a function of S/N ratio. (a), (b) Fluctuating power ratios Ψ 2
1 /Ψ

2
2 and

Ψ 2
3 /Ψ

2
2 for 2Δx/λtest = 0.255 and 2Δx/λtest = 0.509, respectively. (c), (d) Cross phases Δθ12 and Δθ23 for 2Δx/λtest = 0.255 and

2Δx/λtest = 0.509, respectively.

are the results of spectral analyses for 2Δx/λtest = 0.255
(relatively large error) and 0.509 (relatively small error),
respectively. The pair of fluctuation power ratios Ψ2

1 /Ψ
2
2

and Ψ2
3 /Ψ

2
2 are not constant since the S/N ratio decreases

when 2Δx/λtest = 0.255. The pair of fluctuation power ra-
tios is constant when 2Δx/λtest = 0.509. This difference
in the fluctuation power ratios causes the difference in the
errors between these two conditions. When the signal fluc-
tuation powers from the three probes are not similar, the
fluctuation ratios can be affected by the offset of the fluc-
tuation power due to noise. Therefore, it becomes difficult
to estimate the correct wavenumber when the noise ampli-
tude is comparable to the signal amplitude. This error is
systematic and is difficult to reduce by increasing the sta-
tistical accuracy (e.g., increasing the ensemble number).
The shape of the noise spectrum also affects this estima-
tion error in the case of non-white noise. For example, pink
noise, which has a the power spectrum density proportional
to the inverse of the frequency, has a greater effect on the
wavenumber estimation of low-frequency waves. On the
other hand, the cross phases in both cases (Figs. 4 (c) and
(d)) are constant as the S/N ratio decreases. The error bars
of the cross phases increase with the decreasing S/N ratio.
Therefore, the error bars are larger in the smaller S/N ratio
regime.

4. Discussion
Experimental results show that waves with the same

frequency but different wavenumbers exist in magnetized
plasmas. We discuss the effect of such waves on estimation
of k value by applying our method. A wave defined as
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Fig. 5 Results of the proposed method for test data includ-
ing an additional wave. (a) Estimated wavenumber and
(b) Ψ1 sinΔθ12/Ψ3 sinΔθ23 as a function of Radd. Black
dashed line and red solid line indicate k = 40 and k = 20,
respectively. Time window of 2.00 and 30 ensembles are
used for fast Fourier transform.

ψ(x, t) = Aadd cos(ωt − kaddx − φadd) (7)

is added to the test data. The additional wave contami-
nation ratio is defined as Radd = Aadd/Af . Figure 5 (a)
shows the results of our method when such contamination
is present. When the amplitude of the additional wave is
small (Radd < 0.1), estimation is successful. In contrast,
when the amplitude of the additional wave is comparable to
that of the target standing wave (Radd ∼ 1.0), the proposed
method cannot provide the correct value. In addition, when
the amplitude of the additional wave is much larger than
that of the standing wave (Radd > 10), the wavenumber of
the additional wave (kadd = 20) can be estimated. Three
types of probe distances were tested, which indicate sim-
ilar tendencies, i.e., 2Δx/λtest = 1.02 is out of range for
k; however, 2Δx/λadd = 0.51 is within the limit of appli-
cation for kadd. When the proposed method successfully
estimates k (Radd � 0.1 or Radd � 10), Eq. (3) is satisfied,
i.e., Ψ1 sinΔθ12/Ψ3 sinΔθ23 = 1. However, this relation
is not satisfied in the range 0.1 < Radd < 10, as shown
in Fig. 5 (b). Equation (3) can be used to check possible
applications of the proposed method.

5. Summary
A new method for estimating the wavenumber and

amplitudes of a standing wave system by using three-point

fluctuation measurement was proposed. Convenient for-
mulae for estimation of the wavenumber (Eq. (4)) and am-
plitudes of forward and backward waves (Eqs. (5) and (6),
respectively) were derived. The validity of the proposed
method was tested using simulated data with white Gaus-
sian noise. The formulae can be used if the S/N ratio is
greater than 0.1 and the amplitude ratio of the standing
wave and the additional wave is less than 0.1.
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Appendix
A detailed explanation of the derivation process is

given by Eqs. (1) and (2). The expressions given by com-
plex variables in Eqs. (1) and (2) are general:

ψ(x, t) = Afe
i(−ωt+kx+φf ) + Abei(−ωt−kx+φb) (A.1)

and

ψ((l − 2)Δx, t) = Ψle
i(−ωt+θl), l = 1, 2, 3, respectively, (A.2)

where the quantities Af , Ab and Ψl are real, and x2 is de-
fined as the origin. Comparing the imaginary parts of
Eqs. (A.1) and (A.2) at x = 0 (l = 2) yields expressions
for Ψ2 and θ2 using Af , Ab, φf , and φb:

Ψ2
2 = A2

f + A2
b + 2Af Ab cos(φf − φb) (A.3)

and

tan θ2 =
Af sin φf + Ab sin φb

Af cos φf + Ab cos φb
, (A.4)

respectively. Then, comparing Eqs. (A.1) and (A.2) at x =
−Δx (l = 1) and x = Δx (l = 3) with those at x = 0 (l = 2),
we obtain

A2
f e−ikΔx + A2

beikΔx + 2Af Ab cos(−kΔx + φf − φb)

= Ψ2Ψ1eiΔθ12 (A.5)

and

A2
f eikΔx + A2

be−ikΔx + 2Af Ab cos(kΔx + φf − φb)

= Ψ2Ψ3e−iΔθ23 , (A.6)

respectively. Summing Eqs. (A.5) and (A.6) and combin-
ing with Eq. (A.3) gives

2Ψ2 cos kΔx = Ψ1eiΔθ12 + Ψ3e−iΔθ23 . (A.7)

One can obtain Eqs. (3) and (4) from Eq. (A.7) by com-
paring their imaginary and real parts, respectively. On the
other hand, the real and imaginary parts of Eq. (A.5) are

Ψ2
2 cos kΔx + 2Af Ab sin kΔx sin(φf − φb)

= Ψ2Ψ1 cosΔθ12 (A.8)
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and

−A2
f sin kΔx + A2

b sin kΔx = Ψ2Ψ1 sinΔθ12, (A.9)

respectively. Eliminating φf − φb from Eqs. (A.3), (A.8),
and (A.9) gives

A2
f + A2

b =
Ψ2

1 + Ψ
2
2 − 2Ψ1Ψ2 cos kΔx cosΔθ12

2 sin2 kΔx
. (A.10)

Equation (A.9) gives

A2
f − A2

b = −
Ψ1Ψ2 sin kΔx sinΔθ12

sin2 kΔx
. (A.11)

Equations (5) and (6) are derived from Eqs. (A.10) and

(A.11) by summing and subtracting, respectively.
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