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Introduction of Adhesive Force to DEM Simulation and
Application to Fracture of Fragile Powder Materials
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We introduce an adhesive powder model based on the discrete element method (DEM). By using this model,
we investigate how fragile substances consisting of a lot of adhesive powders, powder materials, are fractured.
In the powder material, the powders have a weak attraction and are stuck to each other by adhesion. Thus, the
powder materials are easily broken by the external force. We investigate the crack morphology of the fractured
powder materials by changing two parameters expressing the strength of the adhesive force χ and width of the
powder size distribution Δ. The fracture pattern is changed from cracking to crumbling as Δ increases for every
χ value. Interestingly, we find that this change seems to start at a particular point of Δ from observations of the
fractal dimension of the cracks Df versus Δ. This result may suggest that the morphological change of the cracks
may be related with a transition in the granular systems such as the glass transition.
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1. Introduction
A large number of industrial products are made by

compression of powders, e.g. medical tablets, cosmetic
foundations, and cookies. Here, we focus on solid-like ma-
terials composed by adhesive powders, in which the pow-
ders are glued to each other. We assume that the adhesive
force is a weak and short-range attractive force; hence the
material is fragile, but does not collapse by itself. We call
such fragile materials powder material.

We sometimes experience breakage of the powder ma-
terials and know that they have their own fracture patterns.
For example, the ground will crack if the soil contains ap-
propriate moisture and is made up of grains of almost the
same size whereas it may crumble in the opposite case.
Roughly speaking, there exists two types of fracture pat-
terns: cracking and crumbling. It is very interesting to in-
vestigate how the fracture pattern will change as a function
of moisture and grain size distribution.

Moreover, the fracture aspects often provide function-
alities of industrial products. For instance, (i) medical
tablets should be broken within a given time in the human
body; (ii) the fragility of the cosmetic foundation gives
softness and affects a good feeling to skin; (iii) the texture
of foods corresponds to its breakage behaviors [1]. Addi-
tionally, in the granulation process that a rock is crushed
into small pieces, the surface area of the granules, which is
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directly connected to functionalities of the products, is not
the only function of the powder size; the fractal surface
dimension is also important [2]. Practically, it is a cru-
cial matter to control the fracture aspects. From the micro-
scopic point of view, however, little is known about powder
characteristics which will strongly affect the fractures.

In this paper, we introduce a simulation model of the
powders with the adhesive force. We examine the fracture
aspects of the powder materials by using this model. We
concentrate our attention on the effects of the two charac-
teristics of the powders: strength of the adhesive force and
width of the powder size distribution.

2. Simulation Model
Our simulation is based on the discrete element

method (DEM) [3,4]. In the standard DEM simulation, the
Voight model is employed as a model of the contact force.
We denote the contact forces in the normal and shear di-
rections by fn,i j(t) and fs,i j(t), respectively. Hereafter, the
suffix n and s mean the normal and shear directions. When
i-th and j-th spherical powders with radii ai and a j collide
at time t, fn,i j(t) and fs,i j(t) are given by

fn,i j(t) = Kn,i j(t)dn,i j + ηn

(
d
dt

dn,i j

)
, (1)

fs,i j(t) = min
{
μ fn,i j,Ks(t)ds,i j + ηs

d
dt

ds,i j

}
, (2)
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where K, η and μ are the spring, viscous and friction coef-
ficients, respectively. di j is the amount of the displacement
from the first contact position, i.e. dn,i j = ai + a j − Ri j

where Ri j is the distance between center positions of the i-
and j-th powders. We assume Ks,i j = sKn,i j and s is chosen
to be 0.41.

Kn,i j(t) is usually calculated by the Hertzian contact
theory [3, 4]. The formula when two elastic spheres are in
contact is given by

Kn,i j(t) =
2
3

E
1 − ν2

(
3aia j

2E(ai + a j)
Fn,i j(t)

) 1
3

, (3)

where E and ν are the Young’s elastic modulus and the
Poisson’s ratio, respectively. Fn,i j(t) is a compressive force
between the i-th and j-th powders in the normal direction.
The actual equation of the motion and the method of the
integration are written in Ref. [4]. We should consider that
the contact force is always repulsive while using the for-
mulae (1) and (3).

The adhesive forces between powders arise from very
complicated origins, i.e. mechanical, chemical, electro-
static, and van der Waals forces. In granular systems, wet-
ting of liquids such as water plays the most important role.
Many models have been proposed to explain experimental
observations, but the situation is still complicated [5,6]. At
present, it is not our main concern to pursue realistic wet-
ting models. In this paper, we handle a simple model of
adhesion by modification of (1) and (3) [7].

We suppose that the contact force differs in two cases
that the two powders are getting close and further away.
Let us denote the elastic forces in the approach and de-
parture cases by f in

n,i j and f out
n,i j. We calculate f in

n,i j by (1)
and (3), and f out

n,i j by subtracting a constant value from f in
n,i j.

Consequently, f out
n,i j takes 0 at dn,i j = d0 and negative values

(adhesion) when dn,i j < d0. In Fig. 1, our definition of the
adhesive force is schematically explained.

Of course, d0 must satisfy d0 < ai + a j. If we fix the
value of d0, however, this condition may be violated if ai

and a j are random numbers. Thus, a normalized distance
χ ≡ 100×d0/(ai+a j) is introduced as a strength parameter
of the adhesive force. In this simulation, χ = 1, 2, 3, 4 and
5% are chosen.

Recently, Mitarai and Nakanishi proposed wet granu-
lar models for both pendular and funicular states [8]. Our
model is very similar to the model for the pendular state
(model P). In the model P, fn,i j is given by kdn,i j until
dn,i j ≥ (1−α)(ai +a j) , where k is a elastic constant. When
α > 1, the elastic force becomes attractive and thus α is a
control parameter of the adhesive force. Both our and their
models include only one parameter to express the strength
of the force.

Actually, the two models differ in terms of two points:
the attractive force range and the strength of the attractive
force. First, the attractive force of our model appears in the
positive range of dn,i j, i.e. 0 < dn,i j < χ/100 × (ai + a j),

Fig. 1 Schematic explanation of the adhesive force.

Table 1 Parameters of physical properties of powders.

E a0 ρ ν ηn ηs

kg/m s2 m kg/m3 - kg/s kg/s
4.9 E+9 1.0E-4 2.48E+3 0.23 8.0E-5 5.0E-5

whereas that of their model is negative, i.e. (1 − α) ×
(ai + a j) < dn,i j < 0. In addition, our model gives short
range forces compared with their model; χ/100 and (1−α)
are chosen from 0.01 to 0.05 and from 0.1 to 0.5, respec-
tively. Second, the strength of adhesion in our simulation
is stronger than that in their simulation. Although we can
not compare the strength of the forces directly due to the
difference of the contact force models, the typical particle
deformations in our and their simulations are 1 ∼ 5% and
less than 1%, respectively.

These differences affect the movements of powders.
The relative positions of powders in our simulation are al-
most fixed until the cracks occur whereas those in their
simulation are changed for external forces. As a result,
the lump of the powders of our model becomes harder and
more fragile than that of the model P.

As mentioned before, we introduce another parameter,
i.e. the width of the powder size distribution. We randomly
generate ai according to the Gaussian distribution with the
mean value a0 and standard deviation σ. Under fixing a0,
we change the value of σ. For convenience, we use the
following notation: Δ ≡ 100×σ/a0. In table 1, we provide
the characteristic values of the powders given in Ref. [4].

3. Simulation Procedure
At first, 40,000 powders with different radii are pre-

pared. The powders are uniformly placed in a 200 × 200
grid so that every powder does not have any contact with
the others. Throughout the following simulation, the pe-
riodic boundary condition is applied to the left and right
sides.

The procedure for the simulation consists of three
steps: (1) compression of the powders; (2) relaxation of the
structure by vibration; (3) breakage of the powder material
sample. These steps and the definitions of the parameters

S2116-2



Plasma and Fusion Research: Regular Articles Volume 5, S2116 (2010)

(1)

(2)

(3)

Fig. 2 Illustration of simulation procedures. (1) Compression
process. The powders is uniformly compressed with pres-
sure Pe. (2) Relaxation process. The gray powders oscil-
late horizontally under fixing the black powders at a con-
stant velocity Ve. The maximum strain is γ0. The down-
ward pressure P0 acts on the gray powders. (3) Fracture
process. The gray powders slide horizontally with ve-
locity Ve until the material is fractured. The downward
pressure P1 acts on the gray powders.

Table 2 Parameters used in our simulation.

Ve Pe P0 P1 γ0

m/s N/m N/m N/m -
1.6E-1 2.5 E+1 1.0 E+2 1.0 E+1 2.35 E-2

are shown in Fig. 2.
We should note that appropriate values of Pe, P0 and

P1 must be chosen so that the powder materials may not be
broken before the proper shear force. The parameters used
in the simulation are listed in Table 2.

4. Result and Discussion
Typical figures of the fracture aspects for Δ = 0.0, 1.4

and 3.0 are shown in Fig. 3. There are roughly three types
of fracture aspects. For Δ ≤ 0.3, some large cracks are
formed throughout the powder material and its shapes are
almost straight lines. In the region of 1.0 ≤ Δ ≤ 1.7

(a) Δ = 0.0

(b) Δ = 1.4

(c) Δ = 3.0

Fig. 3 Figures of fractured powder materials for Δ = 0.0, 1.4
and 3.0 at χ = 1.0. In the figures, the black circles denote
the powders of cracks. Small cracks involving less than
7 powders are extracted from the figures. The periodic
boundary condition is applied to the left and right sides.

the powder material splits into the upper and lower parts.
The cracks are partially concentrated in the boundary. For
Δ ≥ 3.0 many small pieces of the cracks are distributed
everywhere. This means that the fracture aspect becomes
crumbling.

One may suspect that the result of Fig. 3 depends on
the system size. In the previous study [7], we have inves-
tigated the dependence of Df on χ under Δ = 0.0 by using
a smaller system, 100 × 80 powders. Although the cracks
in Ref. [7] are shorter and fewer, Df is within the range of
about 1.2 to about 1.6 for all χ values. This is consistent
with the observation of Fig. 3. Thus we expect that the er-
ror bar of Df by the size effect will be small if the system
size is considerably large.
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Fig. 4 Plot of fractal dimension Df versus Δ. Df looks to start
increasing at a particular point of Δ.

The fractal dimension of the cracks Df versus Δ is
depicted in Fig. 4. Df is calculated by the box counting
method. For all χ values, the behaviors of Df are very sim-
ilar: in the region of Δ < 1.0, the value of Df fluctuates
between about 1.2 and 1.6, and after that, Df increases and
finally reaches to 2.0. Since the system is 2D, Df = 2.0
means that the powder material completely crumbles. This
is quite consistent with the observation in Fig. 3.

It is worth mentioning that Df seems to begin increas-
ing not monotonously but suddenly. In order to consider
this behavior in detail, the fractional free volume S f is in-
troduced by

S f =
V −∑N

i=1 πa
2
i

V
, (4)

where V and N are the volume of the system and the num-
ber of the powders. S f expresses the fraction of the free
area where the powders can move freely. Fig. 5 shows the
dependence of S f on Δ. We find that for every χ value
the slope of the line is changed at a particular point of
Δ, Δg. Comparing Figs. 4 and 5, we see that the point at
which Df starts to increase is close to Δg (≤ 1.0) at every χ
value. This result will suggest that the crack morphology
is closely related with S f .

Now, we consider the fracture mechanism of the pow-
der materials in terms of the fractional free volume. We
can imagine two limits of Δ ∼ 0 and Δ � Δg. When
Δ ∼ 0, almost all the powders have a close packed struc-
ture like a crystal and have very little free space. In such
a case, the powders must move cooperatively for the exter-
nal force, i.e. the powder material will behave as a brittle
solid. According to the Griffith theory [9], small cracks in
the brittle solid enhance the strength of the inner stress and
will grow into large cracks if the internal stress exceeds a
critical stress. On the other hand, when Δ � Δg there are
many defects everywhere. Then, the powders have enough

Fig. 5 Plot of fractional free volume S f versus Δ. For every χ,
the point of Δ where the slope of the line is changed is
indicated by the symbol + and defined as Δg.

spaces to move independently. For the external force they
can rearrange their position according to the force balance
principle [10]. Therefore, no stress concentration will oc-
cur and small cracks can not get large, i.e. the powder
material will crumble.

Actually, the similar behavior of the Δ dependence of
S f is found in the glassy materials. It is well known that
the fractional free volume f of the particles in the glassy
materials has the following T dependence [11]

f (T ) ∼
⎧⎪⎪⎨⎪⎪⎩

fg (T ≤ Tg)

fg + α(T − Tg) (T > Tg)
, (5)

where Tg is the glass transition temperature. fg and α are
constant values. Remember that the particles change their
movement from cooperatively to independently at T = Tg

[12]. Although both the phenomena are completely differ-
ent, there is a common factor concerning the mobility of
the powders, which is indicated by the fractional free vol-
ume. Following this analogy, we may suggest that if the
powder material is in a solid-like state, it cracks; if in a
molten-like state it crumbles.

5. Summary
We introduced the adhesive force model into the DEM

simulation. By using this model, the fracture morphologies
of the powder materials were investigated. We found that
as increasing Δ the morphological change from the crack-
ing to crumbling occurs around Δ = Δg.

We also proposed a hypothesis that the morphological
change may be related with a kind of transition in the pow-
der or particle systems such as the glass transition. If this
hypothesis is confirmed, the powerful tools developed in
the theories for the glass transition may be applied to the
fracture mechanism of the fragile powder materials.
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