# Numerical Simulation of Contactless Methods for Measuring $j_{\rm C}$ Distribution of High Temperature Superconducting Thin Film

Teruou TAKAYAMA, Atsushi KAMITANI and Hiroaki NAKAMURA<sup>1)</sup>

Yamagata University, Yamagata 992-8510, Japan <sup>1)</sup>National Institute for Fusion Science, Gifu 509-5292, Japan (Received 8 December 2010 / Accepted 22 February 2010)

The inductive method and the permanent magnet method for measuring the critical current density in a hightemperature superconducting (HTS) thin film have been investigated numerically. For this purpose, a numerical code has been developed for analyzing the time evolution of the shielding current density in a HTS sample. The results of computations show that, in the inductive method, the critical current density near the film edge cannot be accurately evaluated. On the other hand, it is found that, in the permanent magnet method, even if the magnet is placed near the film edge, the maximum repulsive force is roughly proportional to the critical current density. This means that the critical current density near the film edge can be estimated from the resulting proportionality constants.

© 2010 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: current distribution, current measurement, high-temperature superconductor, simulation, thin film

DOI: 10.1585/pfr.5.S2113

## 1. Introduction

High-temperature superconductors (HTSs) can be used in standard applications such as power-transmission cables, flywheel systems and fusion reactor systems. As is well known, HTS materials have various characteristics to keep the superconducting state. In particular, since the critical current density  $j_C$  is one of most important parameters characterizing a superconducting property, it is necessary to accurately measure  $j_C$ .

The standard four probe method is generally used to measure the critical current density  $j_{\rm C}$ . In the method, a HTS sample is coated by gold or silver, and subsequently, it should be heat-treated. This process may lead to not only the destruction of the HTS but also the degradation of the HTS characteristics. Therefore, a contactless method has been so far desired for measuring  $j_{\rm C}$ .

Claassen *et al.* proposed a contactless method for measuring the critical current density  $j_C$  [1]. By applying an ac current  $I(t) = I_0 \sin 2\pi f t$  to a small coil placed just above a HTS thin film, they monitored a harmonic voltage induced in the coil. From the experimental results, they found that, only when a coil current  $I_0$  exceeds a threshold current  $I_T$ , the third-harmonic voltage  $V_3$  develops suddenly. Moreover, it was also revealed that  $j_C$ can be evaluated from  $I_T$ . This method is called the inductive method and is widely used for the determination of  $j_C$ -distributions. On the other hand, Mawatari *et al.* elucidated the inductive method on the basis of the critical state model [2]. As a result, they derived a theoretical formula for the relation between  $j_C$  and  $I_T$ . In contrast, Ohshima *et al.* proposed a novel contactless method [3, 4]. While moving a permanent magnet placed above a HTS film, they measure an electromagnetic force acting on the film. As a result, they found that the maximum repulsive force  $F_{\rm M}$  is almost proportional to the critical current density  $j_{\rm C}$ . This means that  $j_{\rm C}$  can be estimated by measuring  $F_{\rm M}$ . This method is called the permanent magnet method and is recently used for the measurement of the  $j_{\rm C}$ -distribution [5].

In order to simulate two types of contactless methods, a numerical code has been developed by analyzing the time evolution of a shielding current density in a HTS thin film [6]. By using the code, we have succeeded in reproducing the contactless methods. However, since we adopt the cylindrical coordinate in the code [6], the center of the coil and magnet is located at just above the origin. Therefore, it is impossible to evaluate a spatial distribution of  $j_C$  in a HTS sample by use of the code.

The purpose of the present study is to develop a numerical code for analyzing the time evolution of the shielding current density in a HTS thin film for the case with the non-axisymmetric model. In addition, we simulate the inductive method and the permanent magnet method by using the code, and investigate the influence of the coil and the magnet position on the determination of the  $j_{\rm C}$ distribution.

# 2. Governing Equations

In measuring a critical current density  $j_{\rm C}$  by means of the contactless methods, a time-dependent magnetic field is applied to a HTS sample. Throughout the present



Fig. 1 A schematic view of contactless methods for measuring the critical current density  $j_C$ .

study, we assume that a magnetic field  $\boldsymbol{B}/\mu_0$  is applied to a square-shaped HTS thin film of the length *a* and the thickness  $2\varepsilon$  (see Fig. 1). Furthermore, we adopt the Cartesian coordinate system  $\langle O : \boldsymbol{e}_x, \boldsymbol{e}_y, \boldsymbol{e}_z \rangle$ , where *z*-axis is the thickness direction. Note that, in the inductive method, the origin O is chosen at the center of a HTS upper surface. In the permanent magnet method, O is taken at the centroid of a HTS.

As usual, we assume that the thin-layer approximation: since the thickness of the HTS is sufficiency thin, a shielding current density can hardly flow in the thickness direction. Hereafter, a HTS film cross-section passing through z = const. and its boundary are denoted by  $\Omega$  and  $\partial \Omega$ , respectively.

Under the above assumptions, a shielding current density in a HTS is written as

$$\boldsymbol{j} = \frac{1}{\varepsilon} \nabla S \times \boldsymbol{e}_{z},\tag{1}$$

and the behavior of the scalar function  $S(\mathbf{x}, t)$  is governed by the following integro-differential equations [7]:

$$\mu_{0} \frac{\partial}{\partial t} \left[ \int_{\Omega} d^{2} \mathbf{x}' Q \left( |\mathbf{x} - \mathbf{x}'| \right) S \left( \mathbf{x}', t \right) + \frac{1}{\varepsilon} S \right] \\ + \frac{\partial}{\partial t} \left\langle \mathbf{B} \cdot \mathbf{e}_{z} \right\rangle + \left( \nabla \times \mathbf{E} \right) \cdot \mathbf{e}_{z} = 0.$$
(2)

Here, **x** is defined by  $\mathbf{x} \equiv x\mathbf{e}_x + y\mathbf{e}_y$ , and  $\langle \rangle$  is an average operator over the thickness of the HTS. The explicit form of  $Q(\gamma)$  [7] is

$$Q(\gamma) = -\frac{1}{4\pi\varepsilon^2} \left( \frac{1}{\gamma} - \frac{1}{\sqrt{\gamma^2 + 4\varepsilon^2}} \right).$$
(3)

As is well known, the shielding current density j is closely related to the electric field E. The relation is expressed by the *J*-*E* constitute equation:

$$\boldsymbol{E} = E(|\boldsymbol{j}|)\boldsymbol{j}/|\boldsymbol{j}|. \tag{4}$$

As a function E(j), we employ the power law [8]:

$$E(j) = E_{\rm C}(j/j_{\rm C})^{16},$$
(5)



Fig. 2 A schematic view of an inductive method.

where  $E_{\rm C}$  is a critical electric field. In the following, we assume that a HTS film has a uniform  $j_{\rm C}$ -distribution.

For applying the initial and boundary conditions to (2), we assume S = 0 at t = 0 and S = 0 on  $\partial\Omega$ . By solving the initial-boundary problem of (2), we can obtain the time evolution of a shielding current density. A numerical code has been developed for solving the initial-boundary problem of (2). In order to simulate two types of contactless methods, the code can be executed by specifying an assumed critical current density  $j_C$  and a magnetic field **B** generated by a coil or a permanent magnet.

#### 3. Simulation of Inductive Method

By performing the theoretical calculation based on the critical state model, Mawatari *et al.* have derived the following formula [2]

$$j_{\rm C}^{\rm N} = F(r_{\rm max})I_{\rm T}/\varepsilon,\tag{6}$$

where  $j_{\rm C}^{\rm N}$  is an estimated value of the critical current density  $j_{\rm C}$ .  $F(r_{\rm max})$  is the maximum of a primary coil-factor function F(r) [2] which can be determined from the configuration of the coil and the HTS. Furthermore,  $I_{\rm T}$  is a lower limit of a coil current  $I_0$  above which the third-harmonic voltage  $V_3$  begins to develop. For estimating  $I_{\rm T}$ , we use the conventional voltage criterion:  $V_3 = 0.1 \,\mathrm{mV} \Leftrightarrow I_0 = I_{\rm T}$  [2] in the present study.

In the inductive method, the time-dependence magnetic filed  $B/\mu_0$  is generated by applying an ac current  $I(t) = I_0 \sin 2\pi ft$  to an  $N_c$ -turn coil placed just above a HTS thin film. For determining the coil position, the *xy* coordinates of the center of coil is given by  $(x, y) = (x_c, y_c)$  (see Fig. 2). Furthermore, the cross-section of the coil is expressed as  $D = \{(z, r) : |z - Z_c| \le H/2, |r - R_c| \le W/2\}$  with the cylindrical coordinate  $(r, \theta, z)$ . Here, *H* and *W* are height and width of the cross-section, respectively, and its center is  $(z, r) = (Z_c, R_c)$ . Throughout the present section, the parameters are fixed as follows: a = 20 mm,  $2\varepsilon = 600$  nm,  $x_c = 0$  mm,  $N_c = 400$ , f = 1 kHz,  $E_c = 1$  mV/m. For the above configuration, we obtain  $F(r_{max})$ 



Fig. 3 Dependence of the third-harmonic voltage  $V_3$  on the coil current  $I_0$  for the case with  $j_{\rm C} = 1$  MA/cm<sup>2</sup>.

 $6.23 \times 10^4 \,\mathrm{m}^{-1}$ .

Under the above conditions, let us investigate the influence of the coil position on the determination of the  $j_{\rm C}$ distribution. To this end, the *y*-coordinate  $y_{\rm c}$  of the center of the coil is changed from 0 mm to 10 mm.

First, for estimating the threshold current  $I_{\rm T}$ , the thirdharmonic voltage  $V_3$  is calculated as functions of the coil current  $I_0$  and is plotted in Fig. 3. We see from this figure that, for  $y_c = 0$  mm,  $V_3$  begins to develop from a certain value of  $I_0$ , and after that,  $V_3$  monotonously increases with  $I_0$ . By applying the voltage criterion to the  $I_0$ - $V_3$  curve for  $y_c = 0$  mm, we get  $I_{\rm T} = 47.6$  mA. By substituting the value of  $I_{\rm T}$  to (6), we can obtain  $j_{\rm C}^{\rm N} = 0.99$  MA/cm<sup>2</sup>. This value fairly agrees with the assumed critical current density  $j_{\rm C} = 1$  MA/cm<sup>2</sup>. On the other hand, it is found that, for  $y_c = 10$  mm, the behavior of  $V_3$  greatly differs in  $y_c = 0$ mm. According to the voltage criterion, the value of  $I_{\rm T}$  is 19.3 mA for  $y_c = 10$  mm.

Next, let us investigate the relation between the threshold current  $I_{\rm T}$  and the critical current density  $j_{\rm C}$ . To this end,  $I_{\rm T}$  is calculated as functions of  $j_{\rm C}$  and is depicted in the inset of Fig. 4. We see from this figure that, for  $y_{\rm c} = 0$ mm,  $I_{\rm T}$  is roughly proportional to  $j_{\rm C}$ . This tendency quantitatively agrees with Mawatari's theoretical formula (6). On the other hand, it is found that, for  $y_{\rm c} = 10$  mm, the proportional relation between  $I_{\rm T}$  and  $j_{\rm C}$  no longer hold.

Finally, let us numerically investigate a limit of the measurement of the critical current density  $j_{\rm C}$ . In order to quantitatively evaluate the accuracy of the threshold current  $I_{\rm T}$ , we define a relative error

$$\varepsilon_{\rm r} \equiv \|I_{\rm T}^{\rm A} - I_{\rm T}^{\rm N}\|_{\infty} / \|I_{\rm T}^{\rm A}\|_{\infty}. \tag{7}$$

Here,  $I_{\rm T}^{\rm N}$ , a estimated value of  $I_{\rm T}$ , is obtained from the voltage criterion, and  $I_{\rm T}^{\rm A}$ , a theoretical value, is expressed as  $I_{\rm T}^{\rm A} = j_{\rm C}\varepsilon/F(r_{\rm max})$ . Furthermore,  $||f||_{\infty}$  is denoted by  $||f||_{\infty} = \max_{j_{\rm C}\in J} |f(j_{\rm C})|$ . Here, J is defined by  $J \equiv$ 



Fig. 4 Dependence of the relative error  $\varepsilon_r$  on the y-coordinate  $y_c$  of the coil. The inset shows that dependence of the threshold current  $I_T$  on the critical current density  $j_C$ . Here,  $\Delta$ :  $y_c = 0$  mm,  $\mathbf{v}$ :  $y_c = 10$  mm.

 $\{0.1 \text{ MA/cm}^2 \le j_C \le 10 \text{ MA/cm}^2\}$ . The relative error  $\varepsilon_r$  is calculated as a function of  $y_c$  and is plotted in Fig. 4. We see from this figure that, for  $y_c > 7.5$  mm, the accuracy of the inductive method is drastically degraded with  $y_c$ . An important point is that, for  $y_c = 7.5$  mm, the sum of  $y_c$  and the outer radius  $R_c + W/2$  is equal to a/2. From this result, we conclude that, until the outer radius of the coil is equal to the film edge, the critical current density can be accurately evaluated from Mawatari's theoretical formula.

## 4. Simulation of Permanent Magnet Method

In the permanent magnet method, the timedependence magnetic field  $B/\mu_0$  is generated by a cylindrical permanent magnet placed above a HTS thin film. Here, the radius and the height of the magnet are  $r_m$ and  $h_m$ , respectively, and the *xy* coordinates of the center of the magnet is denoted by  $(x, y) = (x_m, y_m)$ . A distance *L* between a magnet bottom and a film surface is controlled as follows:

- (i) From  $L = L_{\text{max}}$  to  $L = L_{\text{min}}$ , the magnet is moved toward the film at the constant speed:  $v = (L_{\text{max}} - L_{\text{min}})/\tau_0$ . Here,  $\tau_0$  is a constant.
- (ii) From  $L = L_{min}$  to  $L = L_{max}$ , the magnet is moved away from the film at the same speed v.

Furthermore, for determining the strength of the magnet, we employ a magnetic flux density  $B_{\rm F}$  at  $(x, y, z) = (0, 0, \varepsilon)$ for the case with  $L = L_{\rm min}$ . Throughout the present section, the parameters are fixed as follows: a = 40 mm,  $2\varepsilon =$ 200 nm,  $x_{\rm m} = 0$  mm,  $r_{\rm m} = 2.5$  mm,  $h_{\rm m} = 3$  mm,  $\tau_0 = 39$  s,  $L_{\rm max} = 20$  mm,  $L_{\rm min} = 0.5$  mm,  $E_{\rm C} = 0.1$  mV/m,  $B_{\rm F} = 0.3$  T.

Under the above conditions, we investigate the influence of the magnet position on the determination of the  $j_{\rm C}$ -distribution. For this purpose, the *y*-coordinate  $y_{\rm m}$  of



Fig. 5 Dependence of the electromagnetic force  $F_z$  on the distance L for the case with  $j_{\rm C} = 3.85 \,{\rm MA/cm^2}$ .

the center of the magnet is changed from 0 mm to 20 mm.

Let us first investigate an electromagnetic force  $F_z$  acting on the film. For the various values of  $y_m$ , the electromagnetic force is calculated as functions of the distance L and are depicted in Fig. 5. We see from this figure that a repulsive force gradually increases as the magnet moves toward the film ( $0 \le t \le \tau_0$ ). On the other hand, an attractive force decreases to zero when the magnet moves away from the film ( $\tau_0 < t \le 2\tau_0$ ). These tendencies do not change regardless of the magnet position. The electromagnetic force for L = 0 can be easily determined by extrapolating the L- $F_z$  curve (see Fig. 5). In the following, this value is called a maximum repulsive force  $F_M$ .

Next, we investigate the relation between the maximum repulsive force  $F_{\rm M}$  and the critical current density  $j_{\rm C}$ . Note that the experimental results were obtained for the case with only  $y_{\rm m} = 0 \,{\rm mm}$  [3, 4]. For various values of  $y_{\rm m}$ ,  $F_{\rm M}$  is evaluated as functions of  $j_{\rm C}$  and is plotted in Fig. 6. This figure indicates that, for  $y_{\rm m} = 0 \,{\rm mm}$ ,  $F_{\rm M}$  increases in proportion to  $j_{\rm C}$ . This result is in qualitatively agreement with Ohshima's experimental one. On the other hand, the results of computations show that, even when the magnet is located at  $y_{\rm m} = 19 \,{\rm mm}$  and 20 mm,  $F_{\rm M}$  is almost proportional to  $j_{\rm C}$ . In other words, the relation can be expressed as  $j_{\rm C} = K(x_{\rm m}, y_{\rm m})(F_{\rm M}/2\varepsilon)$ , where K is a proportionality constant.

From this result, we conclude that, even if the magnet is placed near the film edge, the critical current density  $j_{\rm C}$  can be determined. Therefore, the  $j_{\rm C}$ -distribution in the HTS film can be estimated from the proportionality constants determined by the resulting  $F_{\rm M}$ - $j_{\rm C}$  lines.

#### 5. Conclusion

We have developed a numerical code for analyzing the time evolution of the shielding current density in a HTS sample for the case with the non-axisymmetric model. By using the code, simulating the inductive method and the permanent magnet method, we investigate the influence of



Fig. 6 Dependence of the critical current density  $j_{\rm C}$  on the maximum repulsive force  $F_{\rm M}$ . Here,  $\diamond$ :  $y_{\rm c} = 0$  mm,  $\mathbf{\nabla}$ :  $y_{\rm m} = 19$  mm,  $\triangle$ :  $y_{\rm m} = 20$  mm.

the coil and the magnet position on the determination of the distribution of the critical current density  $j_{\rm C}$ . Conclusions obtained in the present study are summarized as follows:

- (1) In the inductive method, the critical current density  $j_{\rm C}$  near the film edge cannot be accurately measured. In other words, until the outer radius of the coil is equal to the film edge,  $j_{\rm C}$  can be evaluated from Mawatari's theoretical formula.
- (2) In the permanent magnet method, even if the magnet is located near the film edge, the maximum repulsive force F<sub>M</sub> is almost proportional to j<sub>C</sub>. From this result, j<sub>C</sub> near the film edge can be estimated from the proportionality constant determined with the resulting F<sub>M</sub> j<sub>C</sub> lines.

Therefore, we conclude that the measurement of  $j_{\rm C}$  near the film edge is suitable for the permanent magnet method.

#### Acknowledgements

This work was supported in part by Japan Society for the Promotion of Science under a Grant-in-Aid for Encouragement of Scientists No.21920014. A part of this work was also carried out under the Collaboration Research Program at National Institute for Fusion Science (NIFS), Japan. In addition, Numerical computations were carried out on NEC SX-8/8M1 at the LHD Numerical Analysis System of NIFS.

- J. H. Claassen, M. E. Reeves and R. J. Soulen, Jr., Rev. Sci. Instrum. 62, 996 (1991).
- [2] Y. Mawatari, H. Yamasaki and Y. Nakagawa, Appl. Phys. Lett. 81, 2424 (2002).
- [3] S. Ohshima, K. Takeishi, A. Saito, M. Mukaida, Y. Takano, T. Nakamura, I. Suzuki and M. Yokoo, IEEE Trans. Appl. Supercond. 15, 2911 (2005).
- [4] A. Saito, K. Takeishi, Y. Takano, T. Nakamura, M. Yokoo, M. Mukaida, S. Hirano and S. Ohshima, Physica C 426, 1122 (2005).

- [5] S. Ikuno, T. Takayama, A. Kamitani, K. Takeishi, A. Saito and S. Ohshima, IEEE Trans. Appl. Supercond. 19, 3591 (2009).
- [6] T. Takayama, S. Ikuno and A. Kamitani, IEEE Trans. Appl.

Supercond. 18, 1577 (2008).

- [7] A. Kamitani and S. Ohshima, IEICE Trans. Electron. E82-C, 766 (1999).
- [8] E. H. Brandt, Physical Rev. B 54, 4246 (1996).