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A high-performance method has been proposed for calculating the shielding current density in a high-
temperature superconducting thin film. After spatially discretized, the initial-boundary-value problem of the
shielding current density is reduced to a system of first-order ordinary differential equations that has a strong
nonlinearity. However, the system cannot be always solved by means of the Runge-Kutta method even when
an adaptive step-size control algorithm is incorporated to the method. In order to suppress an overflow in the
algorithm, the following method is proposed: the J-E constitutive relation is modified so that its solution may
satisfy the original constitutive relation. A numerical code for analyzing the shielding current density has been
developed on the basis of the proposed method and the inductive method has been investigated by use of the code.
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1. Introduction
Recently, high-temperature superconductors (HTSs)

have been used for numerous engineering applications:
fusion magnet, energy storage system, power cable and
magnetic shielding apparatus. Since the evaluation of the
shielding current density is indispensable for the design of
engineering applications, several numerical methods have
been so far proposed to calculate the shielding current den-
sity.

After discretized with respect to space, the governing
equation of the shielding current density is reduced to a
system of ordinary differential equations (ODEs). If im-
plicit schemes such as the backward Euler method have
been applied to the system, the nonlinear equations have to
be solved at each time step [1–3]. However, the nonlinear
equations are extremely time-consuming because of a lin-
ear term with a dense, symmetric and indefinite matrix. In
this sense, the system of ODEs should be solved with the
method other than implicit schemes.

The purpose of the present study is to develop a high-
performance method for analyzing the time evolution of
the shielding current density in a HTS thin film and to nu-
merically investigate the inductive method [4, 5] by means
of the high-performance method.

2. Governing Equations
A HTS thin film is exposed to the magnetic field B/μ0

where μ0 is a magnetic permeability of vacuum. As a
source of the magnetic field, an Nc-turn coil is placed just
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above the film and an ac current I(t) = I0 sin 2π f t is ap-
plied in the coil. The coil is so arranged that its symmetry
axis may be parallel to the thickness direction of the film.
Throughout the present study, we assume that the film has
a square cross sectionΩ over the thickness and that the coil
has a rectangular cross section. In the following, R1 and R2

denote the inner and the outer radii of the coil, respectively,
and Z2 − Z1 is the height of the coil. In addition, a and b
denote the side length of Ω and the film thickness, respec-
tively, and Z1 is the distance between the coil bottom and
the film surface. The schematic view for the configuration
of the coil and the film is given in [4]. Hereafter, let us use
the Cartesian coordinate system 〈O : ex, ey, ez〉 in which
the thickness direction is taken as z-axis and the center of
the upper film surface is chosen as the origin. Furthermore,
the boundary ofΩ is denoted by ∂Ω and the symmetry axis
of the coil is represented by (x, y) = (xc, yc). Also, both x
and x′ denote the position vectors of two points on the xy
plane.

Under the thin-plate approximation, there exists a
scalar function S (x, t) such that j = ∇ × [(2S/b)ez] and
its time evolution is governed by the following integral-
differential equation [1–3]:

μ0
∂

∂t

(
Q̂ +

2
b

Î
)

S = − ∂
∂t
〈B · ez〉 − (∇ × E) · ez. (1)

Here, 〈 〉 represents an average operator through the thick-
ness. In addition, Î denotes an identity operator and Q̂ is
the operator defined by

Q̂S ≡
�
Ω

Q(|x − x′|)S (x′, t) d2x′,
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where Q(r) = −[r−1 − (r2 + b2)−1/2]/(πb2).
As is well known, the electric field E and the shield-

ing current density j in a HTS thin film are closely related
through the J-E constitutive relation. As the relation, we
assume the power law [3]:

E = E(| j|) ( j/| j|) , E( j) = EC( j/ jC)N , (2)

where jC and EC are a critical current density and a critical
electric field, respectively, and N is a constant.

The initial and the boundary conditions to (1) are as-
sumed as follows: S = 0 at t = 0 and S = 0 on ∂Ω. By
solving the initial-boundary-value problem of (1), we can
investigate the time evolution of the shielding current den-
sity in a HTS film. Note that, if S (x, t) is the solution of
(1) and (2), it also satisfies other J-E constitutive relations.
Since the magnitude | j| of the shielding current density is
bounded, S (x, t) obviously satisfies the inequality:

| j|/ jC ≤ zL. (3)

Here, zL is a positive constant. By using an arbitrary func-
tion E∗( j) such that E∗( j) = E( j) for j/ jC ≤ zL, other
constitutive relations can be written as

E = E∗(| j|) ( j/| j|) . (4)

In other words, zL jC is an upper bound of j below which
E∗( j) = E( j) is fulfilled. Thus, we get the following
proposition: if the solution of (1) and (4) fulfills (3), it
also satisfies (1) and (2). By using the proposition, a
high-performance method can be developed for solving the
initial-boundary-value problem of (1).

Throughout the present study, the physical and the ge-
ometrical parameters are fixed as follows: xc = 0 mm, R1

= 1 mm, R2 = 2.5 mm, Z1 = 0.2 mm, Z2 = 1.2 mm, Nc =

400, f = 1 kHz, EC = 1 mV/m, jC = 1 MA/cm2, a = 20
mm and b = 600 nm.

3. Numerical Methods
After spatially discretized by means of the finite el-

ement method, the initial-boundary-value problem of (1)
is reduced to the initial-value problem of the following
ODEs:

ds
dt
= f (t, s), (5)

where f (t, s) is a vector-valued function defined by

f (t, s) ≡ −W−1
(
db
dt
+ e(s)

)
.

In addition, s, b and e(s) denote nodal vectors originat-
ing from S , B and E, respectively, and W is a dense
and symmetric matrix corresponding to the operator Ŵ ≡
μ0(Q̂ + 2Î/b).

As the numerical method for solving the initial-value
problem of (5), we adopt two types of ODE solvers: the
backward Euler method and the Runge-Kutta method.

3.1 Backward Euler method
After applying the backward Euler method to (5), we

get the following discretized equations [1–3]:

Gn(sn) ≡ W sn + Δte(sn) − un = 0, (6)

where Δt is a time-step size and the superscript n indicates
values at time t = nΔt. Furthermore, un is a nodal vector
irrelevant to sn. Thus, the initial-boundary-value problem
of (1) is transformed to the problem in which the nonlinear
system Gn(s) = 0 is solved at the nth time step.

If the Newton method is applied to the nonlinear sys-
tem Gn(s) = 0, a linear system with a dense and symmetric
matrix has to be solved at each iteration. Moreover, the
matrix is indefinite and, hence, the Bunch-Kaufman fac-
torization method [6] is adopted as a linear-system solver.
Thus, the Newton method requires no more than O(N3

n ) op-
erations at each iteration. Here, Nn is the number of nodes.

3.2 Runge-Kutta method
When the 5th-order Runge-Kutta method [7] is ap-

plied to (5), only 6 evaluations of f (t, s) are needed at each
time step. Thus, O(N2

n ) operations are executed at each
time step of the Runge-Kutta method. In contrast, O(N3

n )
operations are necessary at each time step of the backward
Euler method. Therefore, the Runge-Kutta method is ex-
pected to have a much higher speed than the backward Eu-
ler method. However, it is essentially an explicit scheme
and, hence, it might cause the numerical instability. In or-
der to suppress the instability, Fehlberg’s adaptive step-size
control algorithm [7] is incorporated to the Runge-Kutta
method.

In order to quantitatively investigate the performance
of the adaptive step-size control algorithm, let us define the
execution rate: if the initial-value problem of (5) is suc-
cessfully solved from t = 0 to t = T/ f without causing
any overflow, the execution rate RE is defined as RE ≡ T/2.
Especially when an overflow does not happen during two
time period of I(t), RE becomes equal to 100%. The exe-
cution rate is calculated for various values of the nonlinear
strength N and is depicted in Fig. 1. The execution rate
is equal to 100% for the case with N ≤ 13, whereas the
time evolution process is terminated due to an overflow for
the case with N ≥ 14. On the other hand, the nonlinear
strength N has been usually chosen such that N ≥ 16 in
the shielding current analysis of a HTS thin film [3]. In
this sense, the adaptive step-size control algorithm is not
applicable to the shielding current analysis.

For the purpose of improving the performance of the
adaptive step-size control algorithm, we propose that the
power law (2) be modified as follows:

E∗( j) = EC( j/ jC)N∗( j/ jC). (7)

Here, N∗(z) is given by

N∗(z) = (N − NL)ϕ
(
4[z − (zU + zL)/2]

(zU − zL)/2

)
+ NL,
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Fig. 1 Dependence of the execution rate RE on the nonlinear
strength N for the case with I0 = 200 mA and yc = 0 mm.
Here, (2) is assumed as the J-E constitutive relation.

Fig. 2 The graphs of E∗( j) and E( j) for the case with zL = 3,
zU = 4, NL = 2 and N = 16.

where zL, zU and NL are all constants and ϕ(x) ≡ (1 −
tanh x)/2. The graphs of E∗( j) and E( j) are shown in
Fig. 2. We see from this figure that the equality E∗( j) =
E( j) is approximately fulfilled for j/ jC ≤ zL. Hence, if
the solution of (1) and (4) satisfies (3), it also becomes
an approximate solution of (1) and (2). For this reason,
we propose the following method for solving the initial-
boundary-value problem of (1):

1) After assuming (4) and (7) as the J-E constitutive re-
lation, the initial-value problem of (5) is solved by
means of the Runge-Kutta method with an adaptive
step-size control algorithm;

2) Whether the resulting solution satisfies (3) or not is
checked numerically. If the solution fulfills (3), it is
acceptable as a solution of (1) and (2).

According to our experience of the shielding current
analysis, the value of | j|/ jC never exceeds 3. Thus, the
values of zL and zU are fixed as zL = 3 and zU = 4. The
execution rate RE is evaluated as a function of NL and is de-
picted in Fig. 3. Since the execution rate amounts to 100%
for NL ≤ 11, we assume NL = 2 hereafter.

Let us compare the speed of the proposed method with
that of the backward Euler method. The CPU times re-
quired for both methods are measured on NEC SX-8/8M1
of the LHD Numerical Analysis System in National Insti-
tute of Fusion Science. The dependence of the CPU time

Fig. 3 Dependence of the execution rate RE on the parameter NL

for the case with I0 = 200 mA, yc = 0 mm and N = 16.

Fig. 4 Dependence of the CPU time on the number Nn of nodes
for the case with I0 = 50 mA, yc = 0 mm and N = 16.
Here, the initial-boundary-value problem of (1) is solved
from t = 0 to t = 37/(150 f ) by means of either the back-
ward Euler method or the proposed method. In addition,
Δt = 1/(150 f ) is used as a constant time-step size for the
former, whereas it is chosen as an initial time-step size
for the latter.

on the number of nodes is depicted in Fig. 4. This figure
indicates that the proposed method is much faster than the
backward Euler method. From this result, we can con-
clude that the proposed method becomes a powerful tool
for solving the initial-boundary-value problem of (1).

By using the above method, we have developed a nu-
merical code for analyzing the time evolution of the shield-
ing current density.

4. Numerical Simulation
4.1 Inductive method and Mawatari’s the-ory

The inductive method [4, 5] has been widely used as
a contactless method for measuring jC in a HTS thin film.
In the method, an ac current I(t) is applied in a coil and,
simultaneously, the third-harmonic voltage V3 sin(6π f t +
θ3) induced in the coil is monitored. In general, V3 abruptly
develops just after I0 exceeds the threshold current IT.

Mawatari et al. theoretically analyzed the V3 genera-
tion to get the following formula [5]:

j∗C = 2F(rm)IT/b, (8)

where j∗C is an estimated value of the critical current den-
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Fig. 5 The third-harmonic voltage V3 as functions of the coil
current I0 for the case with N = 16.

sity. In addition, Fm is a factor determined only by the con-
figuration of a coil and a film [5]. Equation (8) indicates
that the critical current density can be estimated from the
measured value of the threshold current IT. However, in
deriving (8), a HTS film is assumed to extend infinitely so
that the film edge may not affect the spatial distribution of
the shielding current density. In this sense, it is not unclear
whether (8) is valid near the film edge.

4.2 Numerical simulation of inductive
method

In this section, the edge effect of a HTS film on the
inductive method is assessed by means of the numerical
simulation. Since the coil-film configuration is given in
section 2, Fm is easily evaluated as Fm = 6.23×104 m−1.

Let us first investigate the influence of the coil position
on the estimated value j∗C of the critical current density. To
this end, I0-V3 curves are determined for various values of
yc and the results of computations are depicted in Fig. 5.
After applying the voltage criterion [5] (I0 = IT ⇐⇒ V3

= 0.1 mV) to the curves, we get IT = 47.6 mA and 24.2
mA for yc = 0 mm and 9 mm, respectively. By substituting
the values of Fm and IT into (8), we obtain j∗C = 0.988
MA/cm2 and 0.503 MA/cm2 for yc = 0 mm and 9 mm,
respectively. Note that the assumed value of the critical
current density is jC = 1 MA/cm2. Hence, the accuracy
of j∗C becomes remarkably degraded as the coil position
(xc, yc) approaches the film edge.

Next, we explain the cause of the accuracy degrada-
tion of j∗C near the film edge. For this purpose, the spatial
distributions of the shielding current density are numeri-
cally determined and are depicted in Figs. 6 (a) and 6 (b).
The distribution is almost axisymmetric for yc = 0 mm,
whereas it becomes anisotropic for yc = 9 mm. This result
means that the axisymmetry of the shielding current den-
sity will be distorted with an approach of the coil to the
film edge. On the other hand, Mawatari et al. assumed
the axisymmetry of the shielding current density in deriv-
ing (8). Therefore, the accuracy degradation of j∗C near
the film edge is attributable to the lost of the axisymmetric
distribution of the shielding current density.

(a) (b)

Fig. 6 Spatial distributions of the shielding current density at
time t = 1.2/ f for the case with I0 = 50 mA and N =
16. Here, (a) yc = 0 mm and (b) yc = 9 mm.

5. Conclusion
We have investigated the numerical method for calcu-

lating the shielding current density in a HTS thin film. Af-
ter discretized with respect to space, the initial-boundary-
value problem of the shielding current density is trans-
formed to the first-order ODEs. However, owing to the
strong nonlinearity, the ODEs cannot be always solved by
the Runge-Kutta method with an adaptive step-size con-
trol. In order to resolve these difficulties, we have proposed
the method in which the J-E constitutive relation is slightly
modified from the original one. A numerical code for an-
alyzing the shielding current density has been developed
on the basis of the proposed method and, as an application
of the code, the inductive method has been investigated.
Conclusions obtained in the present study are summarized
as follows.

1) The proposed method has a much higher speed than
the conventional backward Euler method. This ten-
dency indicates that the proposed method can be a
useful tool for the time-dependent analysis of the
shielding current density in a HTS thin film.

2) The numerical simulation of the inductive method
shows that, if the coil position is close to the film
edge, the accuracy of the method becomes remark-
ably degraded. This is mainly because the distribution
of the shielding current density becomes anisotropic
around the symmetry axis of the coil.
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