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A three-dimensional boundary-node method without any integration cells has been formulated. In the pro-
posed method, an implicit surface is assumed as a surface boundary, and the 3D local coordinates are used to
evaluate surface integrals. Numerical experiments illustrate that although the computational costs of the pro-
posed method are larger than those of the boundary element method (BEM), the proposed method enables the
evaluation of surface integrals without any integration cells. In addition, the accuracy of the proposed method is
almost the same as that of the BEM for the Laplace problem.
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1. Introduction
Potential problems often appear in various engineer-

ing fields such as the nuclear fusion. The boundary-
element method (BEM) has been applied to these prob-
lems and has produced many excellent results; however, a
boundary surface must be divided into a set of boundary
elements before the BEM is applied to the problems.

Alternatively, Chati et al. have proposed the
boundary-node method (BNM) [1] as a numerical method
for solving three-dimensional (3D) potential problems. In
contrast to the BEM, the BNM requires only nodes on a
boundary surface. In other words, elements of a geometri-
cal structure are no longer necessary. However, the surface
must be divided into a set of integration cells to evaluate
surface integrals such as influence coefficients. In this per-
spective, the BNM partially retains the concept of bound-
ary elements.

The purpose of this study is to formulate a 3D BNM
that does not use any integration cells. To this end, a sur-
face boundary is represented in terms of an implicit func-
tion [2], and the 3D local coordinates are used to evaluate
surface integrals. Throughout this study, this method is
called the eXtended boundary-node method (X-BNM).

2. Boundary Integral Equation
As a typical potential problem, we consider a 3D

Laplace problem,

Δu = 0 in V, (1)

u = ū on S D, (2)
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q = q̄ on S N, (3)

where V is a region bounded by a simple closed surface ∂V
that consists of both S D and S N. Here, S D and S N satisfy
S D ∪ S N = ∂V and S D ∩ S N = φ. In addition, ū and q̄ ≡
∂ū/∂n are known functions on S D and S N, respectively,
and n is an outward unit normal on ∂V .

By means of Gauss’ divergence theorem, the last form
of the boundary integral equation can be expressed as

∮
∂V

w∗(x, y)q(x) dS (x)

−
∮
∂V

∂w∗

∂n
(x, y)

[
u(x) − u(y)

]
dS (x) = 0, (4)

where w∗(x, y) ≡ (4π|x− y|)−1, and ∂w∗(x, y)/∂n = n·∇w∗.
If x ∈ ∂V , we assume that u(x) and q(x) are expressed

as

u(x) =
N∑

j=1

φ j(x)û j, q(x) =
N∑

j=1

φ j(x)q̂ j, (5)

where û j and q̂ j are unknown coefficients, and
φ1(x), φ2(x), . . . , φN(x) are shape functions related to
x1, x2, . . . , xN , respectively. Here, x1, x2, . . . , xN are nodes
on ∂V and N is the number of boundary nodes. The shape
functions are generated by means of the moving least
squares (MLS) approximation [1].

Substituting both y = xi and Eq. (5) into Eq. (4), we
obtain

Gq̂ = Hû, (6)

where û = [û1, û2, . . . , ûN]T, and q̂ = [q̂1, q̂2, . . . , q̂N]T. G
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and H are influence matrices whose (i, j) elements are

Gi j ≡
∮
∂V

w∗(x, xi)φ j(x) dS (x), (7)

Hi j ≡
∮
∂V

∂w∗

∂n
(x, xi)

[
φ j(x) − φ j(xi)

]
dS (x). (8)

Note that Gi j and Hi j are called influence coefficients. By
assembling Eq. (6) and the discretized boundary conditions
of Eqs. (2) and (3), a linear system can be obtained. By
solving this linear system, we can determine û and q̂. Fi-
nally, the distributions of u and q on ∂V are determined by
Eq. (5).

3. Shape Functions
In the X-BNM, the shape functions φ j(x) are gener-

ated by means of the MLS approximation. We employ a
polynomial of degree m = 1 in the MLS approximation.
Namely, the shape functions φ j(x) are expressed as

φ j(x) = w(|x − x j|/R)
/∑

i

w(|x − xi|/R), (9)

where w(ρ) is a weight function, and R is the radius of the
support of the shape function. In the X-BNM, the follow-
ing weight function is employed.

w(ρ) = H(1 − ρ)(1 − 6ρ2 + 8ρ3 − 3ρ4). (10)

Here, H(ρ) is the Heaviside function:

H(ρ) ≡
{

1 (ρ > 0),
0 (ρ < 0).

(11)

3.1 Integral domain of influence coefficients
Let S j be the part of the boundary surface ∂V that is

contained in a sphere of radius R and center x j. S j de-
notes the radius of the support of the shape function φ j(x).
Therefore Eqs. (7) and (8) can be expressed as

Gi j ≡
∫

S j

w∗(x, xi)φ j(x) dS (x), (12)

Hi j ≡
∫

S j

∂w∗

∂n
(x, xi)φ j(x)dS (x) + c(xi)φ j(xi), (13)

where c(xi) ≡ Ωi/(4π), and Ωi is the solid angle on xi.
Note that the weight function in Eq. (10) was em-

ployed to satisfy w′(0) = 0, since we will need to deter-
mine

∇φ j(xi) =
1
R

lim
x→xi

⎧⎪⎪⎨⎪⎪⎩−
w(|x − x j|/R)[∑
k w(|x − xk|/R)

]2
× ∑kw′(|x − xk |/R)

x − xk

|x − xk |
+

w′(|x − x j|/R)∑
k w(|x − xk |/R)

x − x j

|x − x j|
}
,

(14)

to evaluate Eqs. (12) and (13) if S j contains a singularity
z (see section 4.3 for more details).

4. Evaluation of Influence Coefficients
Without Integration Cells
In the X-BNM, a boundary surface is assumed to be

an implicit surface f (x) = 0, and the shape function is
assumed to have a support of radius R. Under the above
assumption, the influence coefficients can be written in the
form

I =
∫

S
F dS . (15)

Here, S denotes the part of the implicit surface Π that is
contained in a sphere of radius R and center y. Differ-
ent coordinates are used for the numerical integration of
Eq. (15), depending on whether S contains a singularity z
of F(x).

4.1 Evaluation method for z � S
When S does not contain any singularity of F(x), we

use the 3D polar coordinates (ρ, θ, ϕ) whose center coin-
cides with the sphere’s center y. In addition, we employ
a local Cartesian coordinate system 〈y : e′x, e′y, e′z〉 as il-
lustrated in Fig. 1 a. In the system, e′z is first defined as
e′z ≡ ∇ f (y)/|∇ f (y)|. After that, e′x is generated by Schmidt
orthogonalization. Finally, e′y is defined as e′y ≡ e′z × e′x.
By using the system, arbitrary points x are expressed as
follows:

x = y + ρ(sin θ cosϕ e′x + sin θ sinϕ e′y + cos θ e′z)
≡ g(ρ, θ, ϕ). (16)

Note that, on S , θ is a function of ρ and ϕ, i.e., θ = θ(ρ, ϕ)
by means of the implicit function theorem. Therefore
the vector equation of S is given by x = g(ρ, θ(ρ, ϕ), ϕ)
(0 ≤ ρ ≤ R, 0 ≤ ϕ < 2π). By means of this equation, the
integration in Eq. (15) can be evaluated by

I =
∫ 2π

0
dϕ
∫ R

0
dρF(g(ρ, θ(ρ, ϕ), ϕ))

∣∣∣∣∣∂x
∂ρ
× ∂x
∂ϕ

∣∣∣∣∣
=

∫ 2π

0
dϕ
∫ R

0
dρG(ρ, ϕ), (17)

where

G(ρ, ϕ) ≡ ρF(g(ρ, θ(ρ, ϕ), ϕ))

×
{[

(θρ ρ)2 + 1
]

sin2 θ + (θϕ)2
}1/2
. (18)

Note that θ(ρ, ϕ) is numerically determined by solving the

(a) (b)

Fig. 1 Local Cartesian coordinate systems. (a) S does not con-
tain any singularity of F(x). (b) S contains a singularity
z of F(x).
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following nonlinear equation using the Newton method.

f (g(ρ, θ, ϕ)) = 0. (19)

4.2 Evaluation method for z ∈ S
When S contains z, a slightly different coordinate

system is employed. We use the 3D polar coordi-
nates (ρ∗, θ∗, ϕ∗) whose center is z. In addition, we em-
ploy a local Cartesian coordinate system 〈z : e∗x, e∗y, e∗z〉
as illustrated in Fig. 1 b. Here, e∗x, e∗y, e∗z are defined in the
same manner as e′x, e′y, e′z. By using the system, arbitrary
points x are similarly expressed as in Eq. (16), that is, x =
g∗(ρ∗, θ∗, ϕ∗). Therefore the vector equation is given by
x = g(ρ∗, θ∗(ρ∗, ϕ∗), ϕ∗) (0 ≤ ρ∗ ≤ R∗(ϕ∗), 0 ≤ ϕ∗ < 2π).
By means of this equation, the integration in Eq. (15) can
be evaluated by

I =
∫ 2π

0
dϕ∗
∫ R∗(ϕ∗)

0
dρ∗G∗(ρ∗, ϕ∗), (20)

where G∗(ρ∗, ϕ∗) is defined in the same manner as in
Eq. (18). Incidentally, the equation ρ∗ = R∗(ϕ∗) for the
edge of S is determined by solving the following nonlin-
ear systems:

σ∗1(ρ∗, θ∗) ≡ f (g(ρ∗, θ∗, ϕ∗)) = 0, (21)

σ∗2(ρ∗, θ∗) ≡ |g(ρ∗, θ∗, ϕ∗) − y|2 − R2 = 0. (22)

Here, we employ the Newton method to solve the nonlin-
ear systems. Note that solutions (ρ∗, θ∗) of the nonlinear
systems may not converge to the appropriate ranges, which
are 0 ≤ ρ∗ ≤ 2R and 0 ≤ θ∗ ≤ π. In this case, the Newton
method is restarted with other initial solutions until solu-
tions (ρ∗, θ∗) converge to 0 ≤ ρ∗ ≤ 2R and 0 ≤ θ∗ ≤ π.

4.3 Concrete form of influence coefficients
When S contains z, the integrands of the influence

coefficients, Eqs. (12) and (13), are divided into terms for
accurate evaluation. To divide the integrands, we use the
Taylor expansion. Namely, the shape function φ j(x) is ex-
panded around xi as follows:

φ j(x) = φ j(xi) + ∇φ j(xi) · (x − xi) + O(|x − xi|2).

(23)

Substituting Eq. (23) into Eqs. (12) and (13), we obtain the
following divided form of influence coefficients:

Gi j = GR
i j +GD

i j +GS
i j, (24)

Hi j = HR
i j + HD

i j + HS
i j + c(xi)φ j(xi), (25)

where

GR
i j ≡
∫

s j

w∗(x, xi)
[
φ j(x) − φ j(xi)

−∇φ j(xi) · (x − xi)
]
dS (x), (26)

GD
i j ≡ ∇φ j(xi) ·

∫
s j

w∗(x, xi)(x − xi) dS (x), (27)

GS
i j ≡ φ j(xi)

∫
s j

w∗(x, xi) dS (x), (28)

HR
i j ≡
∫

s j

∂w∗

∂n
(x, xi)

[
φ j(x) − φ j(xi)

−∇φ j(xi)·(x−xi)
]

dS (x), (29)

HD
i j ≡ ∇φ j(xi) ·

∫
s j

∂w∗

∂n
(x, xi)(x − xi) dS (x), (30)

HS
i j ≡ φ j(xi)

∫
s j

∂w∗

∂n
(x, xi) dS (x). (31)

Here, the super-scripts “R”, “D” and “S” indicate regular,
discontinuous, and singular terms, respectively. The orders
of integrands of these terms are O(ρ∗), O(1), and O(1/ρ∗),
respectively, if ρ∗(≡ |x−xi|)� 1. Therefore GR

i j and HR
i j are

evaluated by Eq. (17), since these terms no longer have any
singularity. In addition, GD

i j, HD
i j , GS

i j, and HS
i j are evaluated

by (20), since a singularity remains in these terms.

5. Numerical Experiments
In this section, the performance of the X-BNM is com-

pared with that of the BEM. To this end, both methods
are applied to a simple Laplace problem. The bound-
ary ∂V is assumed to be a sphere of radius 2 whose cen-
ter coincides with the origin. Throughout these numeri-
cal experiments, a known function ū is given as follows:
ū = z(sin x cosh y + cos x sinh y). In addition, the Dirichlet
condition is assumed on the boundary nodes xk that have
zk ≥ 0, and the Neumann condition is assumed on other
boundary nodes. For the shape functions φi(x), radii are
set so that at least four nodes are contained inside each ra-
dius. Note that all the shape functions have the same length
of radius in these numerical experiments.

For the BEM, the boundary ∂V is divided into a set
of triangles for discretization. Figure 2 shows the result of
the discretization for 1004 boundary nodes. The bound-
ary nodes are at the same positions as the vertices of the
triangles. For the X-BNM, the same boundary nodes are
employed. The linear systems of both methods are solved
by means of the Gaussian elimination method. To numer-
ically integrate Eqs. (17) and (20), the trapezoid formula
and Gauss-Legendre quadrature are applied to the ϕ and ρ
directions, respectively.

Computations were performed on a computer
equipped with dual 2.8 GHz Quad-Core Intel Xeon

Fig. 2 Result of discretization for the BEM with 1004 bound-
ary nodes. Colors of triangles are assigned randomly to
distinguish each triangle easily.
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(a)

(b)

Fig. 3 (a) Relationship between the number N of boundary
nodes and the relative error εu. (b) Relationship between
the number N of boundary nodes and the relative error εq.

processors, 24 GB RAM, Mac OS X ver. 10.5.8, and g++
ver. 4.4.0. Note that we used only a single core of the
computer for the computations.

First we investigate the accuracy of both methods. The
relative errors for u and q are defined as

εu =
‖ue − un‖2
‖ue‖2 , and εq =

‖qe − qn‖2
‖qe‖2 , (32)

respectively, where ue = [ue
1, u

e
2, . . . , u

e
N]T, un = [un

1, u
n
2,

. . . , un
N]T, qe= [qe

1, q
e
2, . . . , q

e
N]T, and qn= [qn

1, q
n
2, . . . , q

n
N]T.

Here, the super-scripts “e” and “n” indicate exact and nu-
merical solutions, respectively. Both relative errors are cal-
culated as a function of N and are shown in Figs. 3a and
3b, respectively. In each figure, power regression curves
are fitted to the relative errors. Note that the curves are
illustrated as lines in Figs. 3a and 3b, since both figures
are logarithmic graphs. In Fig. 3a, the slope of the line for
the X-BNM is about −1.0, and that for the BEM is about
−0.88. In Fig. 3b, the slope of the line for the X-BNM is
about −0.98, and that for the BEM is about −0.92. From
Figs. 3a and 3b, we see that there is no obvious difference
between the relative errors of the methods. That is, for the
Laplace problem, the accuracy of the X-BNM is almost the
same as that of the BEM.

Next, we investigate the dependence of the computa-
tional time on the number N of boundary nodes for the
X-BNM and the BEM, as shown in Fig. 4. The computa-
tional times required for the X-BNM are larger than those
for the BEM. Note that the size of the coefficient matrix of
the linear system for the X-BNM is 2N × 2N, and that for
the BEM is N × N. Hence, the computational time of the
X-BNM may be at least eight times as large as that of the
BEM, since the order of the Gaussian elimination method

Fig. 4 Dependence of computational time on the number N of
boundary nodes.

is O(N3/3). In order to evaluate Eqs. (17) and (20), the
X-BNM also requires some additional computations, such
as solving the nonlinear equation in Eq. (19) and solving
the nonlinear systems of Eqs. (21) and (22).

As a result, although the computational costs of the
X-BNM are larger than those of the BEM, the X-BNM en-
ables the evaluation of surface integrals without any inte-
gration cells. In addition, the accuracy of the X-BNM is
almost equal to that of the BEM.

6. Conclusion
A BNM without any integration cells has been formu-

lated. In this formulation, an implicit surface is assumed as
a surface boundary, and the 3D local coordinates are used
to evaluate surface integrals. The Laplace problem is cho-
sen as a typical potential problem, and the performance of
the X-BNM is investigated numerically. Conclusions ob-
tained in the present study are summarized as follows:

1. The computational costs of the X-BNM are larger
than those of the BEM.

2. The X-BNM enables the evaluation of surface inte-
grals without any integration cells.

3. For the Laplace problem, the accuracy of the X-BNM
is almost the same as that of the BEM.

In a future investigation, the Krylov subspace methods will
be employed to solve the linear systems in order to de-
crease the computational costs. Furthermore, solvers for
the nonlinear systems in Eqs. (21) and (22) will be investi-
gated for fast evaluation of numerical integrations. In ad-
dition, a higher degree of polynomial for the MLS approx-
imation will be investigated to obtain a better solution.
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