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Laser-irradiated microclusters can generate energetic ions that produce fusion reactions. The amount and
spectrum of these ions depend on the cluster-size distribution, electron heating mechanism, and cluster expansion
dynamics. This paper describes recent physics results pertinent to the items listed. It is shown that the size
distribution of large clusters can be determined from absorption measurements in a pump-probe experiment. It
is also shown how a laser can create a two-component electron distribution with a hot minority whose energies
exceed the ponderomotive potential. The heating rate and the limitations on electron energy are examined. The
hot electron component expands with an equal number of ions. A first-principle model is presented that describes
ion acceleration by the hot electron pressure together with adiabatic cooling of the hot electrons.
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1. Introduction
Laser interactions with a mixture of a gaseous plasma

and microclusters exhibit a number of interesting phenom-
ena, including fusion neutron production. Microclusters
are generated in laboratory experiments by a supersonic
gas jet expanding into a vacuum. Gas condensation pro-
duces small liquid density droplets and a high-intensity
laser pulse converts them quickly into dense plasmas (mi-
croclusters). Neutron yield in laser-cluster experiments
[1] results from collisions of fast deuterons (with energies
above 10 keV) generated by expanding microclusters. At
moderate laser intensities, the average energy absorbed per
electron and the ponderomotive potential are well below
10 keV (both are 2.5 keV for the parameters of Ref. [1]),
which raises the question about the mechanism of ion ac-
celeration to the energies required for fusion reactions. A
plausible resolution of this difficulty is that the laser field
creates a two-component electron distribution with a cold
majority and a hot minority [2, 3]. In this scenario, the
hot minority undergoes stochastic heating, which allows
it to reach energies exceeding the ponderomotive poten-
tial. The pressure of the hot component forces the cluster
to expand, accelerating ions. Since only large clusters can
produce sufficiently fast ions, the knowledge of the tail of
the cluster-size distribution is essential to interpret the ex-
periments and make quantitative predictions.

In this paper we address all three key ingredients
needed to find the population of fast ions generated by ex-
panding clusters: cluster-size distribution, electron heat-
ing, and ion acceleration. First we discuss a method for
finding the size distribution of large clusters from ab-
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sorption measurements in a pump-probe experiment with
a variable delay between the pulses. We then present
a numerical simulation that demonstrates how the two-
component electron distribution is formed and how the hot
minority is heated stochastically. Finally, we review a first-
principle model that describes ion acceleration in an elec-
tric field generated by the hot electrons [2].

2. Cluster-size Distribution
The distribution of large clusters over sizes can be re-

covered from absorption measurements in a pump-probe
experiment with a variable delay between the two pulses.
This section gives a brief overview of the method and mea-
surements described in detail in Ref. [4].

In our experiments, clusters are formed by conden-
sation in a room temperature pulsed supersonic argon jet
located inside a vacuum chamber. A Series-9 pulsed
solenoid valve from Parker Hannifin (General Valve divi-
sion), backed by pressure P = 41, 350 mbar, opened for
1.5 ms to admit gas into a conical nozzle with orifice di-
ameter d = 750µm and half expansion angle α = 11◦. For
the absorption experiment, a 800 nm, 100 fs pulse from a
10 Hz Ti:sapphire laser system was split into two beams. A
pump pulse (400 nm, 100 fs) was generated by frequency
doubling one beam in a KDP crystal. The pump pulse had
a beam diameter of 40µm. The other 800 nm beam was
used as a probe with a delay controlled by a translation
stage. The focused pump intensity is 1015 W/cm2. The
probe pulse, focused by a separate lens, had a diameter
of approximately 30 µm and intensity of 2 × 1013 W/cm2.
The pump and probe intersect at a small angle of 2◦. The
energy absorption is determined by measuring the probe
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pulse energy with a pyroelectric energy meter.
The measured relative absorption κ(τ) [see Fig. (2)]

can be expressed in terms of the refractive index of the
medium n(τ),

κ(τ) = 1 − exp
(
−2

ωL
c

Im [n(τ) − 1]
)
, (1)

where ω is the frequency of the probe pulse, L is the dis-
tance traveled by the pulse in the medium, and c is the
speed of light. The absorption is dominated by a critical-
density resonance in clusters, so that

Im [n(τ) − 1] = 2π
∫ ∞

0
Im [α (τ,R0)] F(R0)dR0, (2)

where F(R0)dR0 is the number of clusters per unit volume
with initial radii ranging from R0 to R0+dR0. The function
α(τ,R0) under the integral is the polarizability of a single
cluster. The gaseous plasma contribution to the absorption
coefficient is neglected, because this plasma is underdense.

In order to find α(τ,R0), we consider: 1) ionization
and electron heating by the pump pulse; 2) cluster expan-
sion after the pump pulse; and 3) the response of cluster
electrons to the probe pulse. The model for the polarizabil-
ity presented below describes electrons as isothermal due
to their high heat conductivity and it neglects ion expan-
sion during the probe pulse, which is justified for delays
longer than the duration of the pulse. Ions are treated as
cold.

The ionization begins with the tunnel ionization that
quickly generates seed electrons. The collisional ioniza-
tion caused by thermal electrons then takes over and dom-
inates until the end of the pulse. The pump pulse heats
the electrons via inverse bremsstrahlung during electron-
ion collisions. The electron-electron collisions keep the
electron distribution Maxwellian. We define Z0 and T0 as
an average ion charge state and electron temperature at the
end of the pump pulse. These quantities are insensitive to
the cluster radius. We use the ionization and heating rates
given in Ref. [5] to find that T0 ≈ 200 eV and Z0 ≈ 9 for
our experimental parameters.

Cluster expansion after the pump pulse is described by
the following set of equations:
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where ni and vi are the ion density and velocity and T is
the electron temperature. Equations (3) - (5) are the con-
tinuity, ion momentum balance, and energy conservation
equations, respectively. All clusters are assumed to be
spherically symmetric with the same uniform initial den-
sity n0 = 1.8 × 1022 cm−3. We solve Eqs. (3) - (5) nu-
merically for a reference cluster with R0 = R∗ to obtain

Fig. 1 Normalized polarizability for a single cluster.

Fig. 2 Measured (open circles) and calculated (solid line) rel-
ative absorption as a function of the delay between the
pump and the probe.

ni(r, t; R∗), vi(r, t; R∗), and T (t; R∗). Equations (3) - (5) are
invariant with respect to a rescaling transformation r → γr,
t → γt. We use this transformation to find the solution for
other initial cluster radii.

We follow the procedure used in Ref. [6] to calcu-
late the cluster polarizability for a known electron den-
sity profile. Using the rescaling relation for the ion den-
sity, we find that the rescaled polarizability is α(τ,R0) =
(R0/R∗)3α(τR∗/R0,R∗). Figure 1 shows Im[α(τ,R∗)] for
the computed density. The peak is due to the plasma res-
onance present in a cluster. The cutoff occurs during the
expansion when the resonance disappears. The normalized
cutoff time is independent of the size, so that the cutoff oc-
curs at longer delays τ for larger clusters.

The key result of our model is that only large clusters
contribute to the absorption at long delays. Therefore, their
distribution can be recovered by fitting the tail of κ(τ). We
achieve a good fit of the absorption data at τ ≥ 333 fs (see
Fig. 2) using a shifted lognormal distribution,

F(R0) =
c

4πω
1

La4

A/(σ
√

2π)
R0/a − χ exp

⎛⎜⎜⎜⎜⎝−
[
ln(R0/a−χ)− μ]2

2σ2

⎞⎟⎟⎟⎟⎠ ,
(6)

where A = 1.30, χ = 0.12, μ = −2.64, σ = 0.89 and the
radius is normalized to a = 20 nm.

The presented model attributes the entire measured
absorption to the plasma resonance in clusters. This re-
quires the electron collision frequency to be lower than the
laser frequency, which is indeed the case at the beginning
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of cluster expansion. However, the electron cooling during
the expansion increases the rate of electron-ion collisions.
On the other hand, the energy release via three-body re-
combination may prevent fast cooling. Our future plan is
to quantify the effect of recombination in order to evaluate
the role of electron collisions self-consistently.

3. Electron Heating
For sufficiently short laser pulses, electron heating and

ion acceleration occur consecutively. Therefore, we first
examine electron heating, assuming that the ions are im-
mobile. This approach enables us to identify the key fea-
tures that would be present in a more complete model.

We consider an ideally conducting slab in an oscillat-
ing externally applied electric field, which is perpendicular
to the slab. We distinguish two groups of electrons: hot
electrons and cold electrons. The conductor freely emits
new cold electrons as long as the total electric field points
towards the surface. By definition, the cold electrons are
those that have never been emitted, whereas the hot elec-
trons are the ones that exit the slab at least once (even if
they reenter). The electron motion through the slab is col-
lisionless. There is no electric field inside the slab. Conse-
quently, the electrons move ballistically until reappearing
on the opposite side of the slab.

This system is an adequate model of electron dynam-
ics in a large cluster [2], where the hot electrons remain
confined by a narrow potential barrier near the cluster sur-
face. In such clusters, the total electric field is normal to
the surface and it is proportional to cos θ, where θ is the po-
lar angle in a spherical system of coordinates with the axis
directed along the laser electric field. The hot electrons
move predominantly radially and their excursion from the
cluster surface is less than the cluster radius. The slab elec-
trons then represent a group of cluster electrons with the
same value of θ and π − θ.

We simulate the electron dynamics in the slab using
a one-dimensional PIC code. The electric field in the vac-
uum region is calculated by integrating the electron space-
charge outside of the slab. If the electric field at the surface
of the slab is directed towards the slab, then our solver ex-
tracts cold electrons and places them into vacuum next to
the surface. The number of extracted electrons at each time
step is such that the field on the surface vanishes. The elec-
trons in the vacuum region follow the equations of motion
with a self-consistent electric field. Once electrons reenter
the slab, the code computes the time of flight through the
slab and emits these electrons on the opposite side at the
corresponding time instant.

The applied electric field is E = E0 sin(ωt). The only
dimensionless parameter in the problem is

χ ≡ meω
2L

|e|E0
, (7)

where L is the width of the slab. The electrons emitted
into the vacuum are pushed back when the direction of the

Fig. 3 Time-dependence of the average hot electron energy.
Here v is the electron velocity and the angular brackets
denote the averaging over the hot electron population.

Fig. 4 Velocity distribution function f (|v|) of hot electrons inside
the slab at tω/2π = 50 and tω/2π = 250.

applied electric field reverses. The energy of the return-
ing electrons is on the order of the ponderomotive energy
1
2 me(|e|E0/meω)2. This process is known as vacuum heat-
ing [7]. The vacuum heating leads to an increase in the
number of hot electrons, as the returning electrons are re-
placed by newly emitted cold electrons during the next pe-
riod of the applied filed. The emission of cold electrons
continues until the first generation of the hot electrons tra-
verses the slab.

If χ � 1, then it takes several field periods for the first
generation of electrons to traverse the slab. This allows
for the dephasing between the electron velocity and the to-
tal field to occur. The electron interaction with the total
field then becomes stochastic. This process is analogous to
the Fermi heating [8], but in our case the problem is more
complicated because of the dependence of the total field on
the electron energy distribution. The average energy of the
hot electron population is shown as a function of time in
Fig. 3 for χ = 100. The initial flat segment at t < 10 tω/2π
corresponds to the vacuum heating. The energy grows be-
cause of the stochastic heating and the initial growth rate
is linear.

The hot electron distribution function inside the slab
is shown in Fig. 4. At ωt/2π = 50, the distribution has a
well pronounced flat region below v∗ ≈ 8|e|E0/meω. The
“barrier” in the velocity space at v = v∗ results from the
loss of stochasticity. The value of v∗ is determined by the
Chirikov resonance-overlap criterion and it is proportional
to
√

L. Once first hot electrons reach the “barrier” in the
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velocity space, the heating slows down from the initial lin-
ear rate (see Fig. 3).

The described picture shows how the applied field
generates a hot electron population. These electrons un-
dergo stochastic heating, which can increase their energy
significantly compared to the ponderomotive potential.

4. Ion Acceleration
In a spherical cluster, the heating mechanism of Sec. 3

generates hot electrons with predominantly radial veloc-
ities. In order to obtain a simple qualitative picture of
cluster expansion and ion acceleration, we assume that the
electron density is spherically symmetric. Reference [9]
presents an analytical solution for this case for a clus-
ter with a uniform ion background, uniform cold electron
core, and a small population of hot electrons. In what fol-
lows, we summarize the results of Ref. [9].

Prior to the expansion, the cold and hot electron pop-
ulations occupy the same volume. Only the hot electron
cloud expands, which causes a breakdown of quasineutral-
ity at the edge of the cold electron core in the form of a
double layer. The cold electron core is a volume with cold
electrons, hot electrons, and ions. The core maintains its
shape to stay neutral and keep the total electric field in-
side equal to zero. The ions are continuously extracted
from inside the core where their density significantly ex-
ceeds the hot electron density. This explains why a double
layer forms and persists at the cold core boundary during
the expansion. The structure of the double layer is shown
in Fig. 5. The double layer produces a quasineutral super-
sonic plasma flow. Since the flow is supersonic, its density
profile has two distinct regions: a quasi-static region adja-
cent to the double layer and a rarefaction wave associated
with the expanding edge of the plasma. The electron mo-
tion is collisionless, so that sufficiently fast electrons are
able to reach the rarefaction wave. The time-dependent
electric field at the edge reflects these electrons back and,
in the process, they lose some of their energy. The result
of the cooling down is the decrease in the potential dif-
ference between the cold electron core and the rarefaction
wave. This process continues until all hot electrons cool
down and transfer their energy to the ions in the quasineu-
tral expanding flow. The resulting ion spectrum is shown
in Fig. 6. It has been calculated for a top-hat initial veloc-
ity distribution of hot electrons (the corresponding energy
distribution is shown on the same figure) [9]. We draw the
following qualitative conclusions from the solution. The
average ion energy gain is of the order of the hot electron
energy before the expansion. There is also a considerable
fraction of fast ions whose maximum energy exceeds the
initial maximum electron energy. The ions gain as much
as 50% of their final energy moving through the double
layer. However, the fastest ions result from an additional
significant acceleration in the rarefaction wave.

The neutron yield is sensitive to the details of the tail

Fig. 5 Electron and ion density profiles (ne and ni) and electro-
static potential (ψ) in the double layer. The densities are
normalized to the hot electron density n0 at the surface
of the cold electron core, located at r = R0. The elec-
trostatic potential is normalized to its value at the double
layer exit ψ0 = −

√
3EH/2 |e|, where EH is the maximum

(cutoff) electron energy. The radial scale is normalized to
λD = EH/4πn0e2[Et=0

H /EH]1/4.

Fig. 6 Asymptotic ion energy spectrum (solid and dashed
curves) and initial hot electron energy spectrum (dotted
curve). Kinetic energies of ions and electrons are nor-
malized to Et=0

H . The number of particles is normalized to
the total number of hot electrons Ntot.

of the ion spectrum. Therefore, a self-consistent numeri-
cal simulation that incorporates all three elements consid-
ered in this paper (cluster-size distribution, electron heat-
ing mechanism, and cluster expansion dynamics) is re-
quired to make a quantitative prediction regarding the neu-
tron yield.
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