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Magnetic reconnection dynamics due to the nonlinearly destabilized double tearing mode (DTM) is sim-
ulated, focusing on the nonlinear growth phase in the framework of reduced resistive magnetohydrodynamics
(MHD). The nonlinearly explosive growth of the DTM accompanying fast magnetic reconnection is found to
result from a secondary instability, the mechanism of which consists of the sequential unstable modulation due
to two- dimensional distortion of magnetic islands and modification of the nonlinear current profile. The trigger
dynamics of the nonlinear growth phase is illustrated via the investigation of the evolution of both the kinetic and
magnetic energies of the secondary instability.
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1. Introduction
Reversed shear of the q-profile in tokamaks is be-

lieved to be a key to high plasma confinement and an im-
portant issue for the success of fusion energy. The rea-
son is that this configuration is associated with the forma-
tion of internal transport barriers, leading to better confine-
ment of the core. However, it has been experimentally ob-
served that the reversed shear configuration can also excite
magnetohydrodynamic (MHD) instabilities and disrupt the
plasma [1]. Thus, a detailed understanding of these in-
stabilities is necessary. The double tearing mode (DTM)
is one of the associated MHD instabilities and consists of
two co-existing rational surfaces where reconnection oc-
curs, forming magnetic islands. A feature of the DTM is
that those islands can interact with each other, enhancing
the dynamics of the mode. Thus, theories applied to a sin-
gle tearing mode configuration cannot explain the nonlin-
ear processes of the DTM. Pritchett et al. proposed an an-
alytical resolution for its linear evolution [2]: they found
that for a large distance between the rational surfaces, the
instability scales as a tearing instability (γ∼ η3/5), whereas
when the rational surfaces are close to each other, the in-
stability behaves linearly as a kink instability (γ∼ η1/3)
(Fig. 1). In recent years, nonlinear evolution of the DTM
depending on the distance between the rational surfaces
has also been systematically studied [3–7]. Interestingly,
the intermediate coupling defined for η1/3 ≤ γ ≤ η3/5

presents a nonlinear evolution that is very different from
tearing- or kink-type evolution. After a linear growth, the
mode enters a slow down regime in which the configura-
tion continues to evolve but on a much longer scale than the
linear scale. However, instead of saturating, the mode sud-
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Fig. 1 Evolution of α (γ∼ ηα) as a function of the distance be-
tween the two rational surfaces xs.

denly enters a fast growth regime. Ishii et al. [3, 4], who
investigated the onset of the rapid growth, explained this
dynamics by triangular deformation of the magnetic struc-
ture and the resulting current point formation. If the local-
ized current amplitude reaches a certain level, fast growth
is triggered. They concluded that the observed structure-
driven nonlinear destabilization was a direct consequence
of the accelerated magnetic deformation, with much less
effect from the plasma flow. Wang et al. [6,7] revisited the
fast growth of the DTM by reexamining the flow, in par-
ticular the sheared flows that form during the fast growth
regime. Their study claimed that the fast growth consists of
driven reconnection with a small dependency on the resis-
tivity (γ∼ η1/5). Despite these extensive studies, the phys-
ical mechanisms of such explosive growth of the DTM,
and specifically its trigger, have not been fully understood.
Here, we reconsider the problem of the fast growth by
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introducing a modulational-type instability analysis under
the two-dimensionally deformed magnetic structures, sim-
ilar to the study of the generation of zonal flow in micro-
turbulence [8], in which the equilibrium with existing mag-
netic islands is considered. We reveal that the system ex-
hibits some instability with a large growth rate. Such a
secondary instability is considered to be the origin of the
nonlinear destabilization.

2. Configuration and Numerical
Method
The DTM is numerically studied via the resolution of

the reduced MHD equations, assuming incompressibility.
The two-field equations

∂tψ +
[
φ, ψ
]
= η∇2ψ, (1)

∂t∇2φ +
[
φ,∇2φ

]
=
[
ψ,∇2ψ

]
, (2)

express the time evolution of the field variables ψ and φ,
where ψ is the magnetic flux function, and φ is the stream
function. They are related to the magnetic field and ve-
locity field, respectively, by �B = �ez × ∇⊥ψ + Bz�ez and
�V = �ez ×∇⊥φ, where �ez is the unit vector in the z-direction.

The geometry used to solve those equations is a typ-
ical slab one; the finite difference method is used in the
x-direction, whereas we have Fourier expansion in the
y-direction. No equilibrium flow is supposed (φ0 = 0), and
the equilibrium field configuration is the same as in [2]:

B0y(x) = 1 − (1 − Bc) cosh−1(ζx). (3)

Setting ±xs as the positions of the two rational surfaces,
B0y(xs) = 0 yields ζxs = cosh[1/(1−Bc)], and the constant
Bc is chosen such that B0y(xs) = π/2. The times are nor-
malized to the Alfvèn transit times τA and the lengths to a
unit length a.

There is a uniform space grid in the x-direction with a
total mesh number of 2048 for a box size Lx = 10. In the
y-direction, the box size is 2πLy = 2π × 1.2, and the total
mode number for the present calculation is mtot = 5. In this
case, five modes are sufficient enough to produce the fast
growth rate [4]. Finally, the rational surfaces are separated
by a distance 2xs = 1.60, and the resistivity is η = 10−4.

3. Secondary Instability Analysis
The time evolutions of the magnetic and kinetic en-

ergies for the above parameters are shown in Fig. 2. This
simulation shows a typical three-stage evolution. From t =
0 to t∼ 550τA, the modes evolve exponentially. Only the
mode m= 1 is linearly unstable, whereas the other modes
are nonlinearly driven. Around t∼ 550τA, the modes slow
down, in a way similar to the case of the Rutherford regime
of a single tearing instability. The magnetic flux evolves
algebraically in time, while the velocity flux evolution is
almost quasi-steady. Then, around t ∼ 1200τA, the kinetic
energy increases abruptly, followed by the magnetic en-
ergy around t ∼ 1300τA. The magnetic mode m= 0 also

Fig. 2 Time evolution of the magnetic and kinetic energies for
Fourier mode numbers 0 and 1.

increases in the final stage, so that it saturates at a higher
energy level than that of m= 1. This situation corresponds
to a global reconnection of the field lines in which the mag-
netic islands completely disappear and the magnetic field
has the same orientation everywhere.

To investigate the mechanisms leading to the fast
growth, we use a new method that is similar to a secondary
instability analysis. The reason for this investigation is as
follows: after the linear growth, the instability enters the
Rutherford regime where the dominant process is current
diffusion (inertia is negligible) [9]. After this stage, the
small magnetic island of a single tearing mode is expected
to saturate at a critical width. However, with intermedi-
ate coupling of the DTM, the magnetic islands continue to
grow on their respective tearing layers until they reach a
size at which they deform each other (Fig. 3). Therefore,
we investigate the possibility that the deformation of is-
lands is the origin of a new instability.

To conduct such a study, we propose to examine the
destabilization mechanism in the presence of two magnetic
islands. The new quasi-steady equilibrium is now defined
as a configuration with islands. It includes the previous
equilibrium magnetic flux ψ0 combined with the harmon-
ics of the eigenfunction ψ̃ necessary to deform the original
magnetic structure. The equilibrium functions are now ex-
pressed as ψ = ψ0 + ψisl and φ = φisl where ψisl, φisl refers
to the magnetic island harmonics.

Returning to the nonlinear simulation of the DTM,
the trigger mechanism can be investigated by considering
magnetic islands similar to those obtained in the previous
simulation:

ψisl(x, y) = ψ(x, y, t = t1), (4)

φisl(x, y) = φ(x, y, t = t1), (5)

with t1 representing different times in the nonlinear DTM
calculation (Figs. 2 and 3). Here, an important hypothe-
sis is considered. In the nonlinear simulation of the DTM,
the magnetic islands and associated flows are indeed still
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Fig. 3 Magnetic islands at different times (contour plots of the
flux, colors indicate intensity).

Fig. 4 Growth rate evolution for different initial times corre-
sponding to different magnetic island sizes.

evolving in time. However, the time scale of their evolution
is assumed to be much longer than that of the secondary
instability (the magnetic flux is evolving on an algebraic
scale, and the flows are considered to be quasi- steady).
The assumption of static islands is therefore valid regard-
ing the development of a new instability that leads to the
abrupt growth. However, this assumption has some limita-
tions. One can consider static islands only as long as the
magnetic structure itself is not evolving on a faster time
scale than the algebraic one; we therefore limit our study
to times up to t1 ∼ 1300τA (square area in Fig. 4).

The two-field equation system in the linear analysis is
now replaced with one that includes the two-dimensional

(2D) deformation,

∂tψ̃ = −
[
φ̃, ψ0 + ψt1

]
−
[
φt1 , ψ̃

]
+ η∇2ψ̃, (6)

∂t∇2φ̃ = −
[
φ̃,∇2φt1

]
−
[
φt1 ,∇2φ̃

]

+
[
ψ̃,∇2ψ0 + ∇2ψt1

]
+
[
ψ0 + ψt1 ,∇2ψ̃

]
, (7)

where ψ̃ and φ̃ denote secondary perturbations.
The new equilibrium has x and y dependencies: is-

lands can now deform the poloidal magnetic field B0y(x)
due to their poloidal structure and also generate a radial
component Bx(y). Note that although this new simula-
tion is considered in a linear framework, the modes are
still coupled via the Poisson brackets. The set of equations
above is numerically solved, yielding the linear growth rate
of the secondary instability.

4. Numerical Results of the Sec-
ondary Instability
The linear growth of the secondary instability for dif-

ferent island sizes is plotted in Fig. 4 (red crosses). How-
ever, on the x-coordinate, instead of the size of the islands,
we have indicated different times of the nonlinear DTM
calculation for which we have considered the correspond-
ing island size. For comparison, the instantaneous growth
rate of the magnetic flux in the nonlinear simulation is also
plotted (plain blue line), showing the growth rate of the
secondary instability evolving on a much faster time scale
around the trigger at t ∼ 1200τA. Two phases appear in this
graph. In the first (t< 1100τA), the linear growth rate of the
new instability decreases and thin magnetic islands start to
appear. Then, from t∼ 1100τA, the growth rate starts to
increase considerably, which corresponds to a time with
larger magnetic islands. In other words, large, deformed
magnetic islands have a greater destabilizing effect than
thin magnetic islands. Let us examine these features. Be-
fore t ∼ 1100τA, the modes have entered the Rutherford
regime, and the current profile has started to flatten due
to quasi-linear effects, as shown in Fig. 5 (where the equi-
librium current Jeq and the radial current associated with
the mode m = 0, δJ0, have been plotted), with the appear-
ance of thin magnetic islands. As long as the current gradi-
ent at the rational surface (free energy) reduces due to the
flattening effect of δJ0, the growth rate of the second insta-
bility decreases (important flattening at t∼ 900τA). Then,
however, the growth rate starts to increase, which is ex-
pected to be evidence of a secondary instability. This re-
sult can be understood in terms of two effects. First, the
modified current equilibrium (Fig. 6) shows that the flat-
tening effect is replaced by corrugations with finite radial
mode numbers, which can affect the dynamics of the tear-
ing mode, as shown in [10]. As the mode m = 0 con-
tinues to grow, the associated current δJ0 resulting from
the nonlinear coupling of modes shows a corrugated radial
component due to the generation of secondary instability,
and those strong nonlinearities affect the equilibrium cur-
rent. This can be related to studies of modulational insta-
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Fig. 5 Current equilibrium modification by δJ0 (t< 1000τA).

Fig. 6 Current equilibrium modification by δJ0 (t> 1000τA).

bility from background turbulence in the presence of large
structures, leading to the generation of zonal flows [11];
here, the role of the large structure is played by the mag-
netic islands on each tearing layer. Furthermore, Fig. 3, in
which we present 2D flux structures showing magnetic is-
lands with very different sizes at different times, illustrates
that the strong bending of the magnetic field lines by the
islands pushing each other can critically affect the growth

of the secondary instability. This effect directly drives the
fast growth of the flow via the Maxwell stress ([ψ,∇2ψ]) in
the equation of the vorticity, this term being directly linked
to magnetic structure.

5. Conclusion
The nonlinear destabilization of the DTM has been in-

vestigated via numerical simulations of the two-field equa-
tions, in which the equilibrium background has been de-
fined with existing magnetic islands. It has been shown
that 2D effects can destabilize subsequent processes. Dur-
ing the Rutherford regime, the background current is
changed slightly by the nonlinear evolution of the pertur-
bations, which flattens the current around the rational sur-
faces, and therefore reduces the free energy source (given
by the current gradient). However, once nonlinearities be-
come significant, the current is changed so that corrugation
effects may become important, and thus this latter desta-
bilizes consequent tearing modes. At the same time, 2D
structure can also affect mode developments. The subse-
quent interplay between these current profile corrugations
and 2D deformation of magnetic structure is expected to be
the original trigger of the abrupt growth of the DTM. Fur-
ther investigations are planned that will investigate the pro-
cess through which such modulation can nonlinearly affect
the mode development.
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