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Theory of Diamagnetic Signal in Current-Free Stellarators
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The toroidal magnetic flux through the plasma column is calculated analytically for current-free stellarators
of arbitrary geometry without assumptions on the plasma shape, aspect ratio, etc. This is done with accuracy
sufficient for extracting the contribution due to the finite plasma pressure from this flux. The final result is
a formula relating the measured diamagnetic signal with β, the ratio of the plasma pressure to the magnetic
pressure. This formula is obtained assuming small β and the relative depth of the magnetic well. These are
natural conditions for stellarators, therefore the final result can be recommended for magnetic diagnostics without
practical limitations.
c© 2010 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: stellarator, magnetic diagnostics, diamagnetic signal, plasma equilibrium, current-free plasma

DOI: 10.1585/pfr.5.S2054

1. Inroduction
Diamagnetic measurements are a traditional diagnos-

tics used for determining the plasma energy content in
tokamaks and stellarators [1–5]. Interpretation of the mea-
surements are based on a simple formula originally derived
for a circular plasma cylinder [6]

2
δΦ

Φ0
=

B2
J

B2
0

− β̄, (1)

where the measured diamagnetic signal is defined as

δΦ =

∫
S ⊥

(B − Bv)dS⊥, (2)

B is the magnetic field, Bv is the vacuum magnetic field,
Φ0 = B0S ⊥ with S ⊥ = πb2 being the transverse cross-
section of the plasma column, b is its minor radius, B0

is the toroidal field, BJ is the poloidal field at the plasma
boundary due to the net toroidal current, β̄ ≡ 2p/B2

0 is
the ratio of the volume-averaged plasma pressure p to the
magnetic field pressure B2

0/2.
It is known that Eq. (1) can be applied to large-aspect-

ratio tokamaks with a circular plasma [7]. The same or
slightly modified formula has been used for conventional
stellarators [8–10], though the validity of Eq. (1) has been
proved for straight stellarators only [11,12]. Strictly speak-
ing, for stellarators with current-carrying plasma (BJ � 0)
Eq. (1) should contain an additional term [11, 12]. Here
we consider the case when this contribution can be disre-
garded.

The diamagnetic signal for arbitrary shape and aspect
ratio current-free plasma in a toroidal conventional stel-
larator was calculated analytically in [13]. In analytical
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theory, when a cylindrical result is generalized for account
of the toroidal effects, this is usually done by large-aspect-
ratio expansion. It was unexpected that the problem con-
sidered in [13] turned out to be solvable without this ‘natu-
ral’ simplification and even without any assumption on the
plasma shape. The obtained result [13]

δΦ = −1 − δSH

Fb

∫
Vp

pdτ, (3)

was ready for practical use. Similar to (1), it directly re-
lates the measured diamagnetic signal δΦ to the value of
interest, the integral on the right hand side over the plasma
volume. Here the constant Fb = 2πrBt describes the vac-
uum toroidal field Bt, r is the radius from the main vertical
axis, and δSH is a small correction related to the Shafranov
shift and helical field. Later, numerical calculations [14]
for the Large Helical Device (LHD) have demonstrated as-
tonishing accuracy of Eq. (3).

Expression (3) was derived for conventional stellara-
tors with planar circular axis like Heliotron E, CHS, LHD,
and similar. There is a growing interest to stellarators of
more complex geometry [15, 16]. Examples are Wendel-
stein 7-X [17], TJ-II [18], HSX [19], Heliotron J [20],
CHS-qa [21], and NCSX [22]. Our goal here is a further
extension of the analytical theory of diamagnetic measure-
ments on wider class of stellarators. We consider arbitrary
3D toroidal plasma configuration without (or with negli-
gible) net toroidal current and calculate analytically the
toroidal magnetic flux through the plasma column for such
systems. This is done with accuracy sufficient to extract the
contribution into the magnetic flux due to the finite plasma
pressure. The final result is the formula relating the mea-
sured diamagnetic signal to β. This formula can be used
for diagnostic purposes.
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2. General Relations and Assump-
tions
We start from general equilibrium equations

∇p = j × B, (4a)

j = rotB, divB = 0, (4b)

where p is the plasma pressure, j is the current density, and
B is the magnetic field.

Let us introduce a periodic function fH satisfying the
equation

B∇ fH = B2− < B2 >, (5)

where the brackets mean the standard flux-surface averag-
ing,

< f >≡ d
dV

∫
V

f dτ, (6)

and V is the volume inside the toroidal magnetic surface
a(r) = const. The vector product of (B − ∇ fH) and the
force balance equation (4a) gives

(B − ∇ fH) × ∇p − j < B2 >= −B( jB − j∇ fH). (7)

One can see that the vector on the left hand side is
divergence-free. Therefore,

B∇( jB − j∇ fH) = 0, (8)

and the previous equation can be rewritten as

(B − ∇ fH) × ∇p = j < B2 > −B < jB > . (9)

This allows us to express the current density, satisfying
both div j = 0 and the equilibrium equation (4a), in the
form (for more details see [12, 23])

j =
< jB >
< B2 >

B +
[
(B − ∇ fH) × ∇A

]
, (10)

where A is a surface quantity, B∇A = j∇A = 0, defined as

A ≡
a∫

b

p′

< B2 >
da, (11)

the prime means the derivative over a, the label of the mag-
netic surface (arbitrary shape), and a = b is the plasma
boundary. We assume p(b) = 0 below.

For current-free plasmas we have

〈 jB〉 = 0. (12)

In this case the magnetic field b produced by the current
(10) can be explicitly expressed as

b = (1 − eA)(B − ∇ fH) + ∇h. (13)

It can be easily shown that this field turns the equation
rotb = j into identity, with j given by (10) and (12). Note

that b = ∇h outside the plasma, and h must be periodic
there under condition (12) and assuming that b does not
contain a toroidal field from external sources.

Expression (13) is used below for calculating the dia-
magnetic signal. The periodic function h in (13) must be
found from the condition divb = 0. However, it will not
be needed here since it will drop out in the calculated inte-
grals.

Note that all relations in this section are valid for gen-
eral equilibrium described by (4a) and (4b). The only re-
striction (12), meaning that the net current within each
magnetic tube a(r) = const is zero, is rather natural for
stellarators.

Now, in addition to (12), we assume that β
 1, which
is also natural for toroidal systems with strong toroidal
field. Note that the highest β value ever achieved in stel-
larators is about 5% [24, 25]. Several years ago this was
a level target for the largest stellarators [17, 26]. Just for
comparison: the reference operation of ITER is considered
with β < 3% [27].

When β is small, one can use a simplified expression
for A. From definition (11) it follows that

A =
p(a)
< B2 >

+

a∫
b

p
< B2 >2

d < B2 >

da
da. (14)

The second term on the right hand side is small and can be
neglected. This can be justified by using the equality

1
< B2 >

d < B2 >

da
= − p′

< B2 >
− Φ

′V ′′(Φ)
V ′(Φ)

, (15)

which is easily derived from general integral relations for
toroidal current-free equilibrium plasma

< B2 > V ′ = FΦ′, (16)

p′V ′ = −F′Φ′, (17)

where F(a) is the total poloidal current external to the mag-
netic surface, and Φ(a) is the toroidal magnetic flux (for
more detail see [12] and [23]). With (15), the last term in
(14) can be accurately estimated. The result is

A =
p(a)
< B2 >

[
1 + O

(
β

2
,U

)]
, (18)

where U stays for the depth of the magnetic well that
comes from the term with V ′′(Φ) in (15). In stellarators,
the magnetic well is always ‘shallow’ [14–22, 28–30], just
several percent.

Since A ∝ β and β is small,

(1 − eA) < B2 >= − < B2 > A [1 + O(A)] . (19)

Accordingly,

|b|
|B| = O

(
β

2

)
. (20)

These properties are used below to calculate the diamag-
netic signal.
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3. Toroidal Flux
The total toroidal magnetic flux through the plasma

column is

Φ(b) =
1

2π

∫
Vp

B∇ζdτ. (21)

Here the integration is performed over the plasma volume
Vp, ζ is the arbitrary variable varying by 2π along the torus.
It can be the geometrical toroidal angle or the angle in
some flux (or magnetic) coordinates.

The vacuum magnetic field Bv can be expressed as
(see, for example, [12])

2πBv = Fb∇ζ + ∇ϕ, (22)

where

Fb =

∮
Bvdlt (23)

with integration along the closed contour making a com-
plete turn along the torus, and ϕ is the periodic function.
With (22), we can rewrite (21) in the form

FbΦ(b) =
∫
Vp

BBvdτ. (24)

By definition,

B = Bv + b. (25)

Therefore,

BBv = B2
v + Bv b = B2

v + Bb − b2, (26)

and (24) reduces to

FbΦ(b) =
∫
Vp

(B2
v + Bb − b2)dτ. (27)

The first term in the integral (27) gives a constant that
can be calculated by the known vacuum field. In each par-
ticular case it can be done numerically. Here we show sev-
eral useful relations.

It follows from (22) that

2πB2
v = FbBv∇ζ + Bv∇ϕ. (28)

Integrating this over the plasma volume we obtain∫
Vp

B2
vdτ = Fb 〈Φv〉ζ + 1

2π

∫
Vp

Bv∇ϕdτ, (29)

where

Φv(ζ) =
∫
S ⊥

Bv
∇ζ
|∇ζ |dS ⊥, (30)

and

〈Φv〉ζ = 1
2π

2π∫
0

Φv(ζ)dζ. (31)

The first term in (29) is obtained using the formula

dτ = dS ⊥
dζ
|∇ζ | (32)

for the volume element. Since∫
Vp

B∇ϕdτ = 0, (33)

the second term in (29) can be transformed as∫
Vp

Bv∇ϕdτ = −
∫
Vp

b∇ϕdτ. (34)

It is clear that∣∣∣∣∣∣
b∇ϕ
2πB2

v

∣∣∣∣∣∣ = O
(
β

2
B̃
B

)
, (35)

where B̃ stands for the oscillating field described by the
function ϕ in (22). In stellarators this field is a small part
of the total field B, so the second term in (29) is a correction
of the order much smaller that β. Since we need only terms
of the order β with respect to the main term in (27), this
correction can be disregarded.

The second term in (27) depends on β through the
plasma-generated magnetic field b. Using the explicit ex-
pression (13) for b, we obtain for the integral with Bb in
(27): ∫

Vp

Bbdτ =
∫
Vp

(1 − eA) < B2 > dτ. (36)

From this exact equality we obtain with (19) and disregard-
ing the corrections of the order of β and U,∫

Vp

Bbdτ = −
∫
Vp

pdτ. (37)

The last term in (27) is a correction of the next order
in β, see (20). Combining (27), (29) and (37), we obtain
finally the desired result

Φ(b) − 〈Φv〉ζ = − 1
Fb

∫
Vp

pdτ. (38)

For conventional stellarators this gives us Eq. (3). Recall
that (38) is derived here for more complex geometry.

4. Conclusion
Equation (38) shows a direct way of measuring the

stored plasma energy. Being similar to relation (1), this
can be used for wider family of stellarators. The result is
obtained by the expansion in β and contains just the lead-
ing term. The higher-order corrections, if needed, can be
calculated by combining the methods described here and
in [13]. At small β, however, this can be of academic in-
terest only. More important may be incorporation of the
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effects of plasma anisotropy which can change the rela-
tions (3) and (38), as implied by the results [4] for LHD.
Extension of our analysis to this case requires replacement
of (4a) by the proper force-balance equation. At present
there is no yet generally accepted model for description of
anisotropic plasma equilibrium in stellarators [4].

The temporal variation of the toroidal flux through the
plasma can be measured using the standard technique [3–
5, 8–10] or the double loop method [31].

Useful discussions with K. Matsuoka, S. Okamura, K.
Yamazaki, S. Besshou, V. K. Pashnev, H. Yamada and K.
Watanabe are greatly appreciated.
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