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An entropy balance equation that maintains the dynamics in the radial direction is derived to study the role of
zonal flows in turbulent transport. The equation describes the dynamics not only of the entropy density production
related to zonal flow and local heat flux, but also of entropy density convection. We investigated these spatio-
temporal dynamics of entropy in ion temperature gradient driven turbulence based on a global gyrokinetic Vlasov
simulations in a slab geometry. The contribution of zonal flow to entropy production is observed to be small in
the strong instability case, whereas the zonal flow energy is sufficiently large. We also found that the entropy
density with n = 2 in the Hermite polynomial expansion in velocity space plays an important role in convecting
the entropy density, causing turbulent spreading.

c© 2010 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: entropy balance, heat transport, zonal flow, gyrokinetic

DOI: 10.1585/pfr.5.S2050

1. Introduction
Turbulent transport in magnetically confined fusion

plasmas exhibits various prominent features characterized
by different time and spatial scales. Zonal flows, which are
toroidally and poloidally symmetric potential structures
and generated nonlinearly from micro-scale turbulence, are
found to play an important role, leading to the regulation of
turbulence and transport suppression [1]. Zonal pressure,
which is the pressure counterpart of zonal flow, causes
pressure corrugations in the radial direction at shorter scale
lengths and triggers critical gradient transport with inter-
mittent behavior [2]. Furthermore, turbulence has been
found to spatially evolve even in linearly stable regions,
which is referred to as turbulent spreading, and non-locally
transfer energy to a wider radial region [3].

Various theoretical and computational efforts have
been made to understand such complex transport behav-
iors. A statistical approach is one way to identify such
turbulent plasmas. The non-diffusive nature of turbulent
transport in the presence of zonal flows has been stud-
ied using probability density functions [4, 5]. Alterna-
tively, based on a thermodynamics approach, entropy has
been introduced, which has the advantage of connecting
micro-scale phase space structure to macro-scale thermo-
dynamic quantities. The entropy balance equation, which
investigates the relationship between entropy production
due to the generation of turbulence and the resulting heat
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flux, has been discussed [6]. However, the effect of zonal
flows is masked in the conventional entropy balance equa-
tion, since zonal flows correspond to density perturbations,
which vanish once they are integrated over the entire real
space.

Here, we extended the entropy balance equation that
maintains the dynamics in the radial direction, so that it
can describe the spatio-temporal dynamics not only of the
entropy density production related to zonal flow and lo-
cal heat flux, but also of entropy density convection. We
recently developed a global gyrokinetic Vlasov code on
the basis of the conservative form of the interpolated dif-
ferential operator (IDO-CF) scheme, which captures fine
scale structure without causing serious numerical phase er-
rors [7]. Using this code, we investigated the entropy dy-
namics in ion temperature gradient (ITG) driven turbulence
in a slab geometry.

We found that the entropy density with n = 2 in the
Hermite polynomial expansion in velocity space is impor-
tant in convecting the entropy density, causing turbulent
spreading.

The reminder of this paper is organized as follows. In
section 2, we briefly describe our physical model and de-
rive a local entropy balance equation. Then, we investigate
the entropy dynamics by a gyrokinetic Vlasov simulation
in section 3. Finally, concluding remarks are given in sec-
tion 4.
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2. Local Entropy Balance Equation
To investigate global turbulent transport coupled with

zonal flows in real space, we here employ a four-
dimensional (4D) gyrokinetic model for electrostatic ITG
turbulence in a slab geometry as a minimum kinetic model.
The normalized basic equation system is then given as
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where f (t, x, y, z, v||) and Φ(t, x, y, z) are the guiding cen-
ter distribution function and electrostatic potential, respec-
tively. The finite Larmor radius (FLR) effect is maintained
only in the polarization density in the gyrokinetic Poisson
equation [Eq. (2)], however, the essential features of non-
local transport dynamics can be captured. The adiabatic
response for electrons is assumed. Typical normalizations
are applied,
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where vti, ρti and λDσ (σ = ion, electron) are the ion ther-
mal velocity, ion Larmor radius and Debye length, respec-
tively. In the present case, the density and electron tem-
perature are assumed to be homogeneous, whereas the ion
temperature has a profile in the x (radial) direction.

The entropy balance equation is derived by multiply-
ing Eq. (1) by δ f / f0 and integrating it over phase space,
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where f0 and δ f = f − f0 denote the time- indepen-
dent Maxwellian distribution function and its perturbed
part, respectively. The terms on the left-hand side (LHS)
of Eq. (4) represent the entropy production related to (a)
phase space fluctuation, (b) heat flux, (c) higher-order term
of (b), (d) wave-particle interactions such as Landau damp-
ing, and (e) higher-order term of (d), respectively. We de-
fine δs ≡ δ f 2/2 f0, the integrand of (a), as perturbed en-
tropy density. This entropy balance relationship among the
terms has been investigated for an ITG turbulence in wave-
number space. It was found that (a) and (b) balance each
other primarily in the transient phase near saturation and
also in the quasi-steady state [6]. Note that the effect of
zonal flows does not explicitly emerge in Eq. (4).

To study the effect of zonal flows, we derive the local
entropy balance equation by retaining the x dependence in

the integration of Eq. (1),
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where d3Z = dydzdv||. In Eq. (5), the second term on
the LHS is introduced, representing the convection of per-
turbed entropy density δs. Note that the first and second
terms yield
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where vE = −∂yφ. Another difference between Eqs. (5) and
(4) is the third term, which is given by
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where LT(x) = ∂xTi(x)/Ti(x). The first term on the right
hand side (RHS) of Eq. (7) denotes the entropy density pro-
duction related to local heat flux. The second term corre-
sponds to the vorticity flow, which is found from Eq. (2)
under the assumption that the Debye shielding effect is
negligibly small,
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Thus, the RHS of Eq. (8) is found to be directly related to
zonal flow production from the Hasegawa-Mima equation
integrated in (y, z) space:
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The fourth, fifth and sixth terms in Eq. (5), which corre-
spond to (c), (d) and (e), respectively, are found to be rel-
atively small from the driftkinetic ordering. Therefore, the
local entropy balance is established by the entropy density
production related to phase space fluctuation, its convec-
tion, the zonal flow and the local heat flux.

3. Entropy Dynamics in ITG Turbu-
lence
Here, we investigate the local entropy dynamics due to

ITG turbulence using our global 4D (3D in real space and
1D in velocity space) gyrokinetic full-f Vlasov simulation
based on the IDO-CF scheme [7]. We consider a shear-less
slab geometry with a system size given by Lx = 2Ly = 32,
Lz = 8000 in real space and Lv = 10 in velocity space. The

S2050-2



Plasma and Fusion Research: Regular Articles Volume 5, S2050 (2010)

Fig. 1 Time evolution of (A) electrostatic potential with m =
0, 1, 2, 3, 4 and (B) each term in the entropy balance equa-
tion [Eq. (4)].

boundary condition is periodic, and the grid number is typ-
ically chosen as (Nx, Ny, Nz, Nv|| ) = (256, 64, 32, 128).
The temperature profile is given by

Ti(x) = 1 − Lx

2πLT0
cos

(
2π
Lx

x
)
, (10)

with LT0 = 37. Note that there is no magnetic shear, so
the ITG instability is excited in the radial region where the
temperature gradient is steep.

Figure 1 (A) shows the time evolution of the elec-
trostatic potential with different poloidal mode numbers.
Zonal flows are found to play an important role in the sat-
uration of ITG mode and the subsequent suppression of
heat transport. Figure 1 (B) shows the time evolution of
each term in the entropy balance equation [Eq. (4)]. The
entropy production due to phase space fluctuation (a) bal-
ances the heat flux (b) + (c) in the saturation phase and
these values tend to zero because of quasi-linear flatten-
ing and zonal flow stabilization. The contribution of the
wave-particle interactions (d) + (e) is found to be negli-
gibly small. Note that the resolution in velocity space is
limited by Δv|| = 10/128, so fine-scale structure smaller
than this value is barely reproduced. This is found to hap-
pen at around t = 2.5 × 104 from the spectral analysis of
the distribution function using the Hermite polynomial ex-
pansion, which is also used in Fig. 2.

Here, we focus on the local entropy dynamics at (1)
t = 2.0×104, (2) t = 2.1×104 and (3) t = 2.2×104 (marked
by arrows in Fig. 1), where the turbulent state changes sig-
nificantly. Note that the Hermite polynomial expansion
converges at these time scales.

The spatial profile of each term in Eq. (5) is illustrated
in the LHS column (A) in Fig. 2, i.e., the entropy density
production related to the phase space fluctuation (EP), its
convection (EC), the zonal flow (ZF) and the local heat
flux (HF), respectively. The temperature profile is also il-
lustrated. The higher-order terms, i.e., the fourth, fifth and
sixth terms in Eq. (5), are numerically checked and found
to be smaller by about one order of magnitude, as expected
from the ordering (therefore, they are not shown in Fig. 2).
The relative numerical error of the local entropy balance at
each grid point is less than 1.7 × 10−2 at t = 2.2 × 104.

Fig. 2 (A) Spatial profiles of the entropy density production
related to phase space fluctuation (EP), its convection
(EC), zonal flow (ZF) and local heat flux (HF) at (1)
t = 2.0 × 104, (2) t = 2.1 × 104 and (3) t = 2.2 × 104.
Temperature profile is also shown. (B) Spatial profiles of
the entropy density production (EP) for n = 0, 1, 2 and
n > 2 with respect to the Hermite polynomial expansion.

To classify the role of perturbed entropy dynamics, we
decompose the entropy density production (EP) by means
of the Hermite polynomial expansion [8]. We show the
spatial profile of EP for n = 0 (density fluctuation), n = 1
(momentum fluctuation), n = 2 (temperature fluctuation)
and the sum of the orders higher than n = 3 with respect
to the Hermite polynomial expansion in the RHS column
(B).

In Fig. 2 (A1), which is the phase near the saturation,
the local heat flux (HF) is induced due to the excitation of
ITG mode where the temperature gradient is steep. Note
that HF causes temperature relaxation and then flattening,
as seen in Fig. 2 (A2). At this stage, a significant portion of
the entropy density is found to be convected to both outer
regions (see the EC profile). Then, the flattening of the
temperature evolves further, leading to the propagation of
fronts accompanied by the coupling between the entropy
density production (EP) and convection (EC), as seen in
Fig. 2 (A3). Note here that the effect of zonal flow (ZF) is
found to be weak. This suggests that the zonal flow pro-
vides a small contribution in the units of entropy, whereas
it overcomes the turbulent fluctuation in the unit of energy,
as shown in Fig. 1 (A).

As seen in Fig. 2 (B1), the components with n = 1 and
n = 2 in the Hermite polynomial expansion are found to
be primary contributors to the entropy production, whereas
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the component with n = 0, which is related to the zonal
flow, contributes relatively less. Interestingly, as seen in
Figs. 2 (B2) and (B3), the component with n = 2 (temper-
ature fluctuation) is important in convecting the entropy
density to the outer regions. On the other hand, the zonal
flow stays in a linearly unstable region and does not con-
tribute to the convection. As a result, the front dynamics is
dominated by the convection of the perturbed entropy with
n = 2.

4. Conclusion
We derived an entropy balance equation that maintains

the dynamics in the radial direction, and can describe the
spatio-temporal dynamics not only of the entropy density
production related to zonal flow and local heat flux, but
also of entropy density convection. Based on a 4D gyroki-
netic Vlasov simulation in a slab geometry, we investigated
the entropy dynamics in ITG turbulence.

In the phase where the turbulent state changes signif-
icantly, the entropy density production related to the heat
flux balances not only that due to the phase space fluctua-
tion, but also its convection, leading to front propagation.
On the other hand, the contribution of zonal flow to en-
tropy production is observed to be small even in the sat-
uration phase, where the zonal flow energy is sufficiently
large. This suggests that plasma dominated by large scale
zonal flows corresponds to a lower entropy state.

From spectral analyses through the Hermite poly-

nomial expansion, we found that temperature fluctuation
is important in convecting the perturbed entropy density,
causing turbulent spreading, whereas the zonal flow stays
in a linearly unstable region and does not contribute to con-
vection. This can be understood as indicating that zonal
flow is low and/or zero frequency so that it hardly evolves
in the radial direction. Front propagation is thus estab-
lished primarily by the balance among the entropy density
production related to phase space fluctuation with n = 2,
its convection and the local heat flux.

The present local entropy balance equation will be ex-
tended to an electron temperature gradient (ETG) driven
turbulence system and also to a toroidal geometry.
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