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Orthonormal Divergence-Free Wavelet Analysis of Energy
Transfer in Hall MHD Turbulence
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We studied the basic features of energy transfer in fully developed, freely decaying, isotropic, and ho-
mogeneous turbulence in magnetohydrodynamic (MHD) and Hall MHD (HMHD) media using orthonormal
divergence-free wavelet analysis. The analysis supports the idea that energy transfer occurs locally; i.e., in-
tense energy transfer occurs between modes that have very close spatial scales. The wavelet counterpart of triad
interaction analysis in Fourier analysis shows that local interaction, i.e., combinations of three wavelet modes
that have very close spatial scales, dominates the energy exchange between the velocity and magnetic fields. En-
ergy transfer due to the Hall effect has opposite tendencies at larger and smaller scales, which is consistent with
the results of Mininni et al. [P.D. Mininni et al., J. Plasma Phys. 73, 377 (2007)]. At larger scales, it causes a
moderate inverse cascade. In contrast, it causes an intense forward cascade at smaller scales.
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1. Introduction
Though the single-fluid magnetohydrodynamic

(MHD) equations are considered a good platform for
studying macroscopic behaviors of fusion plasmas, some
phenomena may be outside the scope of these equations.
The roles of two-fluid effects have attracted attention in
research areas such as fusion plasmas [1, 2] and astro-
physical plasmas [3, 4]. Hall MHD (HMHD) is known
as a simple fluid model that includes a two-fluid effect.
The features of turbulent energy transport in HMHD
systems were investigated by Mininni et al. using Fourier
analysis [5].

The purpose of the present work is to determine the
basic features of energy transfer due to nonlinear inter-
actions, magnetic induction, and Hall term effects using
wavelet analysis. Only the spatial scale information on
wavelets is used here, although they also have informa-
tion on location, helicity and anisotropy in wavenumber
space. Wavelet analysis of mode interactions between dif-
ferent spatial scales has a counterpart in Fourier analy-
sis [6]. Using information on the locations of wavelets, we
developed a useful tool to visually illustrate the relation-
ship between coherent structures and the intensity of mode
interactions [7, 8]. The location information is extracted
by decomposing the integrals given by Eqs. (8), (9), (12),
and (13) in section 3. The analysis has no counterpart in
Fourier analysis and requires much greater computer re-
sources. Thus, this work is also regarded as a preliminary
to more detailed wavelet analysis.
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2. Basic Equations and Analyzed
Data
The incompressible HMHD equations are

∂u
∂t
+ (u · ∇)u = −∇P + j × b + ν∇2u, (1)

∂b
∂t
= ∇ × ((u − ε j) × b) + η∇2 b, (2)

where u is the bulk velocity field and satisfies ∇ · u = 0, b
is the magnetic field, j := ∇× b is the current density field,
P is the total pressure, ν is the kinematic viscosity, η is the
resistivity, and ε is the parameter for the relative strength
of the Hall term. In the present study, the parameters are
set to ν = η = 2 × 10−3 and ε = 0.05. The case of ε = 0 is
studied for comparison.

Here, we analyze the same snapshot data that were
used in Miura and Hori [9]. The simulation conditions,
the time evolution of the kinetic and magnetic energies,
and other details are described in Ref. [9]. Figure 1 shows
wavelet-scale spectra of the kinetic and magnetic energies.

3. Wavelet-Scale Spectra and Energy
Budget Equations
In the present study, we focus on the energy budget of

MHD and HMHD for each spatial scale of the velocity and
magnetic fields. For this purpose, we carried out scale-to-
scale energy budget analysis on the basis of the orthonor-
mal divergence-free wavelets proposed in Ref. [6].

The velocity and magnetic fields are expanded in the
wavelet modes as

c© 2010 The Japan Society of Plasma
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Fig. 1 Wavelet-scale spectra of the kinetic and magnetic ener-
gies. Squares: E(u)

j , circles: E(b)
j ; open symbols: HMHD,

solid symbols: MHD. Abscissas of each quantity are de-
termined according to the mean wavenumber of u j and

b j, which is given by kj :=
√∫ |∇ × f j|2d3�x

/ ∫ | f j |2d3�x,
where f stands for u, b.

f (�x, t) =
∑

f jε�lσ(t) ψ jε�lσ(�x), (3)

where f stands for u or b, ψ’s are the wavelet basis func-
tions, and the expansion coefficients are given by f jε�lσ(t) :=∫

f (�x, t) · ψ jε�lσ(�x)d3�x. The physical implications of the

wavelet indices j, ε, �l, andσ are summarized in Ref. [7]. In
the present study, we use only the information on the spa-
tial scale of the wavelets. Thus, the fields are decomposed
into a wavelet-scale spectrum, which is given by

f =
∑

j

f j where f j(�x, t) =
∑
ε,�l,σ

f jε�lσ(t)ψ jε�lσ(�x).

(4)

Note that as the scale index j increases, the corresponding
spatial scale becomes smaller by a factor of 1/2.

Substituting the wavelet-scale expansion of u and b
into the basic equations [Eqs. (1) and (2)] and taking the
inner product with each of the wavelet-scale spectra u j and
bk, respectively, yields the energy budget equations for the
scale spectra of the kinetic and magnetic energies, as fol-
lows:

d
dt

E(u)
j =
∑
k,m

〈
u j

∣∣∣um

∣∣∣uk
〉

NL

+
∑
k,m

〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor +
∑

k

D jk, (5)

d
dt

E(B)
k =

∑
j,m

〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind

+
∑
j,m

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall +
∑

k

Rk j, (6)

where the subindices of the brackets NL, Lor, Ind, and Hall
stand for nonlinear interaction, the Lorentz force, magnetic
induction, and the Hall effect, respectively. The E j values
and brackets, respectively, are defined by the integrals

E(u)
j :=

1
2

∫
u j · u j d3�x, (7)

〈
u j

∣∣∣um

∣∣∣uk
〉

NL := −
∫

u j · ((um · ∇)uk) d3�x, (8)

〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor :=
∫

u j · ( jk × bm) d3�x, (9)

D jk := ν
∫

u j · ∇2uk d3�x, (10)

E(b)
k :=

1
2

∫
bk · bk d3�x, (11)

〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind :=
∫

bk · ∇ × (u j × bm) d3�x, (12)

〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall := −ε
∫

bk · ∇ × ( j j × bm) d3�x, (13)

Rk j := η
∫

bk · ∇2b j d3�x. (14)

and jk := ∇× bk. The pressure term vanishes because each
scale spectrum is divergence-free. In the following equa-
tions, the fields that appear in a bracket

〈
f
∣∣∣, ∣∣∣ f ∣∣∣, and

∣∣∣ f〉
are called the to-mode, by-mode, and from-mode, respec-
tively.

Integrating by parts shows that these brackets satisfy
the following antisymmetric relations:〈

u j

∣∣∣um

∣∣∣uk
〉

NL = −
〈
uk

∣∣∣um

∣∣∣u j
〉

NL, (15)〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor = −
〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind, (16)〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall = −
〈
b j

∣∣∣bm

∣∣∣bk
〉

Hall. (17)

The implications of these relations are that the role of
the nonlinear term [Eq. (15)] and the Hall term [Eq. (17)]
are the redistribution of the kinetic and magnetic ener-
gies, respectively. The role of the magnetic induction and
Lorentz force terms [Eq. (16)] is mutual conversion of the
magnetic and kinetic energies.

In Ref. [8], we discussed in detail the physical founda-
tion of the evaluation of energy transfer between the kinetic
and magnetic energies by the integrals of ∇ × (u × b) and
j× b instead of (b · ∇)u and (b · ∇)b. The key to the choice
of integrand is the invariance under an arbitrary change in
local coordinate system.

4. Contribution of Each Term to the
Evolution of E(u)

j and E(b)
j

Before going into the details of wavelet scale-to-scale
energy budget analysis, we present the contribution of
each cubic terms in Eqs. (5) and (6) to the evolution of
E(u)

j and E(b)
j . Figure 2 shows the wavelet counterparts

of the transfer function in Fourier analysis. Brackets are
summed with respect to the from- and by-modes, e.g.,〈
u j

∣∣∣b∣∣∣b〉Lor :=
∑

k,m
〈
u j

∣∣∣bm

∣∣∣bk
〉

Lor. The following features
appear:

1. For both MHD and HMHD, the nonlinear and Lorentz
force terms are positive for j = 6, 7, 8.

2. Weak nonlinear energy backscatter to larger scales
( j = 0, 1, 2) is also seen in both cases.
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Fig. 2 Wavelet-scale spectra of energy transfer functions. Top:
terms appearing in Eq. (5), bottom: those in Eq. (6).
Squares:

〈
u j

∣∣∣u∣∣∣u〉NL, circles:
〈
u j

∣∣∣b∣∣∣b〉Lor, triangles:〈
b j

∣∣∣b∣∣∣u〉Ind, and inverted triangles:
〈
b j

∣∣∣b∣∣∣b〉Hall. Abscissas
of each quantity are the same as those in Fig. 1.

3. The peaks of the magnetic induction and Lorentz
force effects on HMHD evolution are slightly shifted
to smaller wavenumber modes compared with the
MHD case.

4. The Hall term reduces the magnetic energy of
moderate-scale components ( j = 4, 5, 6) and in-
creases those of larger ones (0 ≤ j ≤ 3) moderately
and of smaller ones ( j = 7, 8) intensively.

5. Wavelet Scale-to-Scale Analysis of
the Energy Budget between E(u)

j

and E(b)
k

In this section, we present more detailed features of
the energy budget of the kinetic and magnetic energies.
Figure 3 shows the spectra of the magnetic induction en-
ergy transfer brackets, which are given by

〈
bk

∣∣∣b∣∣∣u j
〉

Ind :=∑
m
〈
bk

∣∣∣bm

∣∣∣u j
〉

Ind. Although their average moduli differ, it
is very remarkable that the following features are found in
both the MHD and HMHD cases:

1. When j ≥ k, i.e., the scales of the velocity compo-
nents u j are comparable to or smaller than those of
the magnetic ones bk, energy is transferred from bk to
u j. On the other hand, when j < k, the direction is

Fig. 3 Wavelet scale-to-scale energy transfer spectrum for mag-
netic induction:

〈
bk

∣∣∣b∣∣∣u j
〉

Ind. Top: MHD case, bottom:
HMHD case. Solid circles:

〈
bk

∣∣∣b∣∣∣u j
〉

Ind > 0, i.e., the
transfer enhances the magnetic energy E(B)

k , open cir-
cles:

〈
bk

∣∣∣b∣∣∣u j
〉

Ind < 0, i.e., the transfer enhances the
kinetic energy E(u)

j . Contours are added to clarify the
transfer amplitudes. Levels of contours are given by
(0.1n + 0.05) ×max

{〈
bk

∣∣∣b∣∣∣u j
〉

Ind
}
, where n is an integer.

reversed. Overall, energy is transferred from larger-
scale components to smaller ones due to magnetic in-
duction (or the Lorentz force) irrespective of the kind
of field.

2. Intense transfer is localized around j ∼ k. This im-
plies that energy transfer is local; i.e., the transfer
brackets that dominantly contribute to the energy bud-
get are constituted by modes that have spatial scales
very close to each other.

The dominance of local transfer is in sharp contrast to
the results of Alexakis et al. [10], Mininni et al. [5], and
our previous result [11], all of which report the importance
of nonlocal energy transfer.

6. Influence of Hall Effect on the En-
ergy Budget of E(b)

j Values
Figure 4 shows the wavelet scale-to-scale energy

transfer spectrum for the Hall term effect
〈
bk

∣∣∣b∣∣∣b j
〉

Hall :=
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Fig. 4 Wavelet scale-to-scale energy transfer spectrum for the
Hall term effect:

〈
bk

∣∣∣b∣∣∣b j
〉

Hall. Solid and open circles and
contours have the same meaning as in Fig. 3. Crosses
denote sites at which

〈
bk

∣∣∣b∣∣∣b j
〉

Hall ≡ 0.

∑
m
〈
bk

∣∣∣bm

∣∣∣b j
〉

Hall. Remarkably, the energy redistribution
due to the Hall effect is also dominated by local transfers.
It is also very interesting that the direction of energy trans-
fer at smaller scales ( j ≥ 5) is opposite to that at larger
scales ( j ≤ 4). At small scales, energy is intensively trans-
ferred to smaller scales; i.e., the Hall effect enhances the
forward energy cascade. A moderate inverse energy cas-
cade occurs at larger scales.

These results are qualitatively consistent with those
found in Mininni et al., which are based on Fourier analy-
sis [5]. Quantitative comparison of our results with theirs
does not seem straightforward because wavelet analysis
has logarithmically mode-binding nature in wavenumber
space, which is partly discussed in Ref. [6]. Their pre-
sentation, on the other hand, is based on linear binding in
wavenumber space.

7. Detailed Analysis of the Magnetic
Induction Bracket
In some sense, the brackets [Eqs. (8), (9), (12), and

(13)] are wavelet counterparts of the so-called triad in-
teraction in Fourier analysis of mode coupling. Figure 5
shows the distribution of the magnetic induction brackets〈
bk

∣∣∣b5
∣∣∣u j
〉

Ind. as a typical example of the energy transfer
tendency.

1. The scale of the to-mode
〈
bk

∣∣∣ of dominant interaction
is very close to that of the by-mode

∣∣∣bm

∣∣∣, i.e., k ∼ m,
m ± 1.

2. The intensive positive transfers are aligned on scales
with k = m and m + 1. Negative ones are aligned on
scales with k = m − 1.

3. The scale range of the from-mode
∣∣∣u j
〉

of significant
interactions is rather broad, but the scales that give the
maximum or minimum number of brackets are con-
centrated around m = 4 or 5.

Fig. 5 Wavelet scale-to-scale energy transfer spectrum of the
magnetic induction for an assigned by-mode |b5|:〈
bk

∣∣∣b5

∣∣∣u j
〉

Ind. Top: MHD case, bottom: HMHD case.
Solid and open circles, cross symbols, and contours have
the same meaning as in Figs. 3 and 4.

We confirmed that these features are seen in com-
mon for by-mode number m = 4, 5, 6, 7. It is remarkable
and very interesting that although the peaks of the spectra
for an assigned by-mode number m are aligned in the j-
direction at some fixed k values, their superposition gives
the distribution shown in Fig. 3, which is characterized by
the concentrated alignment of peaks around j ∼ k.

This work is performed under the auspices of the NIFS
Collaboration Research program (NIFS07KTBL004).
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