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It is widely accepted that the radial electric field strongly affects plasma confinement through the transport
process. We have analysed the time evolution of the radial electric field and the radial transport in plasmas in a
helical magnetic configuration by extending the TASK/TX code [M. Honda and A. Fukuyama, J. Comput. Phys.
227, 2808 (2008)]. TASK/TX is a one-dimensional dynamic transport code originally developed for axisymmet-
ric plasmas. A set of flux-surface averaged fluid equations is solved simultaneously, rather than a set of diffusion
equations based on the flux-gradient relations. TASK/TX consists of one-dimensional two fluids (electron and
ion) equations, Maxwell’s equations and diffusion equations of neutrals. To apply TASK/TX to helical plasmas,
we have included two additional effects; helical neoclassical viscosity force and diffusion due to magnetic braid-
ing. Plasma transport simulation is carried out mainly using the LHD parameters. We obtained negative radial
electric field (ion root) with ion heating and positive radial electric field (electron root) with electron heating.
Effects of magnetic braiding are also studied.
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1. Introduction
In toroidal plasmas, the radial electric field Er strongly

affects plasma confinement through the transport process.
In helical plasmas, equations based on the ambipolar con-
dition [1] have been widely used to determine the radial
electric field. Some of the equations include an ambiguous
electric diffusion coefficient DE . In this paper, we present
simulation results of the radial profile and the time evo-
lution of radial electric field and radial transport in heli-
cal plasmas by extending the TASK/TX code [2]. The
TASK/TX is a one-dimensional dynamic transport code,
which can simulate time evolution of the plasma fluid
quantities including Er, by solving a set of fluid equations,
rather than a set of diffusion equations based on the flux-
gradient relations.

In section 2, we give a brief description of the
TASK/TX and explain the specific helical terms added to
the original TASK/TX. In section 3, after reviewing tradi-
tional ambipolar equations to determine Er, the time evo-
lution equation of Er derived from the equations of motion
in TASK/TX is shown. The results of numerical simula-
tions will be presented in section 4, and we conclude this
paper in section 5.

2. Transport Models
2.1 TASK/TX code

The TASK/TX is the one-dimensional dynamic trans-
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port code originally developed for axisymmetric plasmas,
which solves a set of flux-averaged two-fluid equations.
TASK/TX consists of flux-averaged Maxwell’s equations,
two-fluid equations for electrons and bulk ions, as well as
diffusion equations for three groups of neutrals. By solv-
ing these equations simultaneously, radial profiles of the
radial electric field, density, temperature, plasma rotation
and so on are obtained. In order to apply TASK/TX to he-
lical plasmas, we have introduced additional terms briefly
described in the following subsections.

2.2 Helical neoclassical transport
The magnitude of the magnetic field B = |B| in the

helical configuration is expressed in an approximate form:

B(r, θ, φ) ≈ B0 {1 − εT cos θ − εH cos(lθ − mφ)} .

Here, εT and εH are toroidal modulation and helical mod-
ulation of the magnetic field, l and m are the poloidal
and toroidal mode numbers. The helical ripple results in
neoclassical viscosity in toroidal and poloidal directions,
which leads to enhanced neoclassical diffusion in the low
collisional regime. The helical neoclassical viscosity force
FHNC

sθ and FHNC
sφ are derived as follows for species s.

The position of a particle on a magnetic surface can
be described by ζ = lθ − mφ. If ∂ζ/∂t = 0 then the parti-
cle moves along the twisted magnetic surface, while in the
case of ∂ζ/∂t � 0, the moving particle experiences the he-
lical neoclassical viscosity force FHNC

s perpendicular to the
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twist of the magnetic field. Poloidal and toroidal compo-
nents of FHNC

s can be written with the helical neoclassical
viscosity νHNC

s as follow [1]:

(
FHNC

sθ
FHNC

sφ

)
= −

(
αθ
−αφ

) msnsν
HNC
s
∂ζ

∂t√
(l/r)2 + (m/R)2

= − msnsν
HNC
s

×
(
α2
θ −αθαφ

−αθαφ α2
φ

) (
usθ

usφ

)
, (1)

where

αθ =
l/r√

(l/r)2 + (m/R)2
, αφ =

m/R√
(l/r)2 + (m/R)2

.

Here we used

∂ζ

∂t
= l
∂θ

∂t
− m
∂φ

∂t
= l

uθ
r
− m

uφ
R
.

Assuming 1/ν regime and collisional detrapping
regime, the helical neoclassical viscosity νHNC

s can be writ-
ten as follow [1, 3]:

νHNC
s =

v2
Tsε

3/2
H

R2νs

1

3 + 1.67
εTεHω

2
E

ν2s

. (2)

Here ωE = Er/Br is E × B drift frequency.

2.3 Diffusion due to magnetic braiding
In helical plasmas, destroyed magnetic surfaces due

to magnetic perturbation appear near the plasma edge and
enhance the radial transport. In order to apply TASK/TX
to helical plasmas, we added the radial diffusion terms due
to destroyed magnetic surfaces.

For weakly collisional plasmas, diffusivity due to the
magnetic braiding can be expressed as follows [4]:

Dr ≡
〈
(Δr)2

〉
τ

=

〈
(Δr)2

〉
vTs

λ
= DmvTs. (3)

Here, λ = τvTs is the distance along the magnetic field,
which corresponds to mean free path, and Dm is the spa-
cial diffusion coefficient. Eq. (3) shows that the diffusivity
due to the destroyed magnetic field is assumed to be pro-
portional to the thermal velocity vTs of the species s. We
used a fixed profile for Dm in the present calculation as

Dm(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dm0
(ρ − ρmin)2(ρmax − ρ)2

((ρmax − ρmin)/2)4

(ρmin < ρ < ρmax) ,

0 (otherwise) ,

(4)

where ρ is the normalized minor radius and ρmin and ρmax

are the lower and the upper bound of the braided re-
gion. Here the maximum value of Dm is given as Dm0 =

Dm((ρmax − ρmin)/2).

3. Governing Equation for the Radial
Electric Field
In the previous literatures, two methods have been

used to determine the radial electric field [1]. The first
is called as the algebraic ambipolar relation, which is ex-
pressed using the radial ambipolar particle flux Γas for
species s:

ε0
∂

∂t

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎜⎝1 + c2

v2
A

⎞⎟⎟⎟⎟⎠ Er

⎫⎪⎬⎪⎭ = −
∑

s

esΓas.

This equation has a difficulty that Er can change discon-
tinuously in the radial direction. This difficulty can be
avoided by the formulation including derivatives of the
electric field.

ε0
∂

∂t

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎜⎝1 + c2

v2
A

⎞⎟⎟⎟⎟⎠ Er

⎫⎪⎬⎪⎭ = −
∑

s

esΓas

+
1

V ′(r)
∂

∂r

⎡⎢⎢⎢⎢⎢⎣V ′(r)

⎛⎜⎜⎜⎜⎜⎝
∑

s

es

e
DE

⎞⎟⎟⎟⎟⎟⎠ ∂Er

∂r

⎤⎥⎥⎥⎥⎥⎦ ,
where DE is the electric diffusion coefficient given in [1].

Corresponding equation can be derived from the equa-
tions of motion in TASK/TX. Keeping the Lorentz forces,
the perpendicular viscosty force and the neoclassical vis-
cosity force in the poloidal and toroidal equations of mo-
tion, we obtain

ε0
∂

∂t

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎜⎝1 + c2

v2
A

⎞⎟⎟⎟⎟⎠ Er

⎫⎪⎬⎪⎭
= −

∑
s

Bφ
B2

{
1
r2

∂

∂r

[
r3msnsμs

∂

∂r

(usθ

r

)]
+ FNC

sθ + FHNC
sθ

}

+
∑

s

Bθ
B2

{
1
r
∂

∂r

(
rmsnsμs

∂usφ

∂r

)
+ FHNC

sφ

}
. (5)

Here, FNC
sθ is the axisymmetric neoclassical viscosity force

in poloidal direction, which is valid in banana-plateau
regime, defined as [5];

FNC
sθ = −

√
πq2nsms

vTs

qR
ν∗sθ

1 + ν∗sθ
usθ , ν

∗
sθ ≡

νsqR

ε3/2T vTs
,

FHNC
sθ and FHNC

sφ are poloidal and toroidal components
of the helical neoclassical viscosity defined in Eqs. (1)-(2).
Observing Eq. (5), we find that the balance of neoclassical
viscosity forces corresponds to the traditional ambipolar
relation.

Solving equations of motion directly, we can describe
the time evolution of the radial electric field more consis-
tently than conventional ambipolarity equations.

4. Numerical Simulation
In the following simulation, we adopted typical pa-

rameters of the Large Helical Device (LHD):

R = 3.7 m, a = 0.60 m, b = 0.65 m,

l = 2, m = 10, εH = εh0ρ
2, εh0 = 0.2.
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Here, l and m are the poloidal and toroidal pitch number, R
is the major radius, a and b are the minor and wall radius.
Initial conditions were set as follow:

ne0(ρ) = ne0(0) + [ne0(0) − ne0(1)](1 − ρ3),

ne0(0) = 1.0 × 1019 m−3 , ne0(1) = 1.0 × 1018 m−3 ,

Ts0(ρ) = Ts0(0) + [Ts0(0) − Ts0(1)](1 − ρ2)2,

Ts0(0) = 0.30 keV , Ts0(1) = 0.02 keV ,

q0(ρ) = q0(0) + [q0(0) − q0(1)](1 − ρ2),

q0(0) = 2.0 , q0(1) = 1.0.

For comparison of the effect of magnetic braiding, we also
used parameters of a typical small helical device:

R = 1.3 m, a = 0.35 m, b = 0.38 m,

l = 2, m = 5, εH = εh0ρ
2, εh0 = 0.1,

ne0(0) = 4.0 × 1019 m−3 , ne0(1) = 5.0 × 1018 m−3 ,

Ts0(0) = 0.30 keV , Ts0(1) = 0.02 keV ,

q0(0) = 3.0 , q0(1) = 2.0.

For anomalous transport coefficients, particle diffusivity D,
perpendicular viscosity μs and thermal diffusivity χs, em-
pirical fixed profiles are used in the present analysis:

D(ρ) = D(0) + [D(1) − D(0)] ρ3,

D(0) = 0.1 m2/s , D(1) = 0.3 m2/s,

μs(ρ) = μs(0) +
[
μs(1) − μs(0)

]
ρ2,

μs(0) = 3 m2/s , μs(1) = 30 m2/s,

χs(ρ) = μs(ρ).

4.1 Ion-root confinement with ion heating
First we examined the dependence of plasma fluid

quantities on the ion heating power PRF
i in the case of

PRF
i = 0.2 MW, 0.4 MW, 0.6 MW. Figure 1 shows the

radial profiles of (a) radial electric field Er, (b) electron
density ne, (c) safety factor q, (d) electron temperature Te,
(e-f) electron plasma rotation ueθ and ueφ, (g) ion tempera-
ture Ti, (h-i) ion plasma rotation uiθ and uiφ at t = 0.1 s.

Negative Er is formed in all radial region, whose mag-
nitude |Er | is almost proportional to the heating power. The
electron density ne became lower as the heating power be-
came stronger. In all cases, the density has decreased lin-
early as time advances.

4.2 Electron-root confinement with electron
heating

Next we examined the dependence of radial profiles
on the electron heating power PRF

e in the case of PRF
e =

0.2 MW, 0.4 MW, 0.6 MW. Figure 2 (a-i) shows the radial
profiles of Er, ne, q, Ts, usθ and usφ at t = 0.5 s as same as
Fig. 1.

Contrast to the case of ion heating, positive Er peaking
at ρ ≈ 0.1 is observed in the case of higher electron heating
power. The peak value of Er becomes larger as the heating
power increases. Particle confinement becomes better with
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Fig. 1 Radial profiles for PRF
i = 0.2 MW (black), 0.4 MW (red)

and 0.6 MW (blue).
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Fig. 2 Radial profiles for PRF
e = 0.2 MW (black), 0.4 MW (red)

and 0.6 MW (blue).

higher heating power. A hollow density profile where the
density gradient becomes positive is observed at ρ � 0.2.

We have also examined the time evolution of the radial
electric field Er in the case with PRF

e = 0.4 MW. Figure 3
shows the time evolution of (a) Er profile, (b) temperatures
on magnetic axis Ts(0) and averaged temperatures 〈Ts〉, (c)
density on magnetic axis ne(0) and averaged density 〈ne〉.

At the beginning of heating Er is negative in all region
but the transition to Er > 0 occurs near ρ ≈ 0.1. We ob-
served the same behavior in the case of PRF

e = 0.2 MW and
0.6 MW, but the time of transition was earlier in the case
of higher heating power and vice versa.

4.3 Effect of magnetic braiding
First we analysed the effects of destroyed magnetic

surfaces in a typical small helical plasma. The radial pro-
file of the magnetic diffusivity Dm(ρ) is defined as Eq. (4).
The lower and the upper bound of the braided region are
set to ρmin = 0.85 and ρmax = 1.02, respectively, and the
maximum value of Dm(ρ) is Dm0 = 1.0 × 10−8. The heat-
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Fig. 4 Effect of magnetic braiding on (a) Er, (b) ne, and (c)
Te of a typical helical plasma. The case without mag-
netic braiding (black) and the case with magnetic braid-
ing (red).

ing power is PRF
e = 0.036 MW. Figure 4 shows the radial

profiles of (a) Er, (b) ne and (c) Te at t = 0.15 s.
Sharp increase in Er is observed near the ergodic re-

gion. This can be understood as follow. It is clear from eq.
(4) that in the ergodic region electrons diffuse more quickly
than ions since vTe 
 vT i, which results in the increase of
Er. Although the density slightly decreases inside the er-
godic region, the temperature profiles are not affected. The
difference may be explained by large heat transport mainly
driven by the anomalous transport.

We also examined the effects of destroyed magnetic
surfaces using the LHD parameters. The profile of Dm(ρ)
was set as same as in the previous calculation. The heating
power is PRF

e = 0.2 MW. Figure 5 shows the radial profile
of (a) Er, (b) ne and (c) Te at t = 0.5 s.

For LHD plasmas, remarkably large positive Er ap-
peared in the ergodic region, while density and tempera-
ture profiles were not affected. The reason why the results
which differ from the case of typical small helical plasma
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Fig. 5 Effect of magnetic braiding on (a) Er , (b) ne, and (c) Te in
LHD plasma. The case without magnetic braiding (black)
and the case with magnetic braiding (red).

were obtained are not clear and left for our future work.

5. Conclusion
In this study, we simulated the radial transport and the

time evolution of the radial electric field in helical plasmas
by extending the TASK/TX code. By changing the ion and
electron heating power, the ion root and the electron root
transport were obtained. In the case of the ion heating,
only the ion root was observed. In the case of the electron
heating, electron root has appeared near the magnetic axis.
Effect of magnetic braiding was also studied for typical
small helical plasmas and LHD plasmas.

A future work includes : 1) Comparison of the radial
electric field which is obtained from TASK/TX and the
usual ambipolar relation. 2) Study of parameters depen-
dence of the existence and performance of electron root
(anomalous transport model, density et al.) 3) Theory-
based model for turbulence transport, such as current-
diffusive interchange mode (CDIM) model instead of the
fixed spacial profile.
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