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The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experi-
mentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density
distribution, with the exception of a low-density distribution surrounding the plasma. When the eigenmode fre-
quency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under
the assumption of ideal conditions wherein the temperature is zero and the boundary is located at an infinite dis-
tance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher
than the theoretical prediction. Experimental examinations and numerical calculations indicate that the finite
temperature effect alone cannot account for the upward shift of the eigenmode frequency, which is significantly
affected by image charges induced on the conducting boundary.
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1. Introduction
A non-neutral plasma in a homogeneous magnetic

field B = B0ẑ and a harmonic electrostatic potential well
is theoretically predicted to evolve to thermal equilibrium
in the form of a rigidly rotating spheroid of uniform den-
sity [1]. The dispersion relation for the electrostatic eigen-
modes of a spheroidal plasma can be determined analyt-
ically to be dependent on the plasma density and the the
aspect ratio (that is the ratio between axial and radial ex-
tents of the spheroidal plasma) [2]. This property of the
eigenmodes has been examined experimentally with pure
ion plasmas or pure electron plasmas [3–6] from the view-
point of its application to the nondestructive diagnostics of
plasma characteristics and, in particular, to measurements
of difficult-to-produce species such as positrons [7,8].

The dispersion relation was derived for a plasma un-
der ideal conditions wherein the temperature is zero and
the boundary is located at an infinite distance from the
plasma [2]. In practice, however, the actual experimen-
tal conditions are often different from the theoretical as-
sumptions, and the effect of the difference on the observed
eigenmode properties has not been sufficiently examined
in experiments. In this study, we investigate the frequency
characteristics of axisymmetric eigenmodes excited in an
experimentally observed spheroidal plasma with a wide va-
riety of equilibrium density distributions.
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Fig. 1 Schematic view of experimental configuration.

2. Experimental Setup and Method
The experiment is carried out using a pure electron

plasma trapped in a Penning trap with a uniform magnetic
field (B0 = 0.5 T) and a harmonic potential well, as shown
schematically in Fig. 1. The conducting wall of radius
RW = 45 mm consists of ring electrodes axially aligned
with a pitch of 24 mm. By assigning a stepwise voltage to
each electrode, a harmonic potential distribution is formed
in the central region of the trap [6, 9]. From preselected
cathode elements, electrons are introduced into the trap
through a temporally decreased potential barrier at one end
of the harmonic well. After several seconds of isolated
relaxation following repetitive operations of an injection-
hold cycle, the electron density distribution evolves to an
axisymmetric single-peak profile.

Axisymmetric eigenmodes are resonantly excited by
applying a burst of rf perturbations to one electrode at a
frequency that is linearly ramped up from 4 to 20 MHz over
a period of 30 ms. The excited mode is detected through
image charges induced by the plasma motion on another
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electrode. The axial mode number � is directly identified
by observing the phase differences among the wave signals
detected on each electrode.

After the eigenmode is detected, by removing one side
of the potential barrier, the electrons are dumped onto the
conducting phosphor screen biased at 5 kV, and the re-
sultant luminosity distribution is recorded with a charge-
coupled-device (CCD) camera. The conducting screen
also serves as an electron collector to determine the num-
ber of trapped electrons. Because the total electron number
is confirmed to be linearly related to the integrated lumi-
nosity of the CCD image, the luminosity distribution pro-
vides an absolute measurement of the line-density distri-
bution integrated along the magnetic field lines [10].

The three-dimensional (3D) distribution of the elec-
tron density n(r, z) is obtained from the observed line-
integrated density profile n�(r) by solving the Boltzmann-
Poisson equation [9]

∇2φS(r, z) =
e
ε0

n(r, z)

=
e
ε0

n�(r)
exp

[
(φT + φS)/Te

]
∫

dz exp
[
(φT + φS)/Te

] , (1)

where φT, φS, Te, −e, and ε0 are the trap potential, self-
field potential, electron temperature, electron charge, and
dielectric constant in vacuum, respectively. Here, it is
assumed that Te is spatially homogeneous and that the
plasma is in local thermal equilibrium along each magnetic
field line, so that the density at each radius has a Boltz-
mann distribution. The density distribution n(r, z) is deter-
mined under the condition

∫
dzn(r, z) = n�(r) that is im-

posed by the experimental observation of the line-density
profile n�(r) [9]. The electron temperature is determined
by analyzing a radial profile of electrons escaping over the
slightly lowered potential battier [9]. The typical tempera-
ture in this experiment is evaluated to be Te ≤ 0.1 eV.

An example of the 3D density distribution n(r, z) thus
obtained is shown in Fig. 2. Figure 2 (a) shows the line-
integrated density profile n�(r) obtained by azimuthally av-
eraging a 2D luminosity distribution (Fig. 2 (a), inset). By
solving Eq. (1) using the measured n�(r) and Te ≈ 0.1 eV,
the 3D distributions of the density n(r, z) and the self-
consistent potential φS(r, z) are obtained. The contour plots
of the resultant n(r, z) and the total potential distribution
(φT + φS)(r, z) are shown in Fig. 2 (b), and the radial and
axial density profiles are shown in Figs. 2 (c) and (d), re-
spectively. The function n(r, z) is ellipsoidal, and inside the
plasma, the density is nearly uniform with a sharp bound-
ary in the axial direction. Furthermore, the total potential
is almost constant along the magnetic field line. These ob-
servations are consistent with the theoretical expectations
for a plasma in thermal equilibrium [1]. However, on ac-
count of a halo distribution surrounding the plasma, the ra-
dial density distribution differs from a stepwise profile and
extends to the conducting wall. In this example, the es-
timated plasma parameters are radius rp ≈ 9.4 mm, semi-

Fig. 2 Example of a 3D density distribution n(r, z). (a) Line-
integrated density profile n�(r) obtained by azimuthally
averaging a 2D luminosity distribution (inset). (b) Con-
tour plots of n(r, z) (solid line) and total potential distri-
bution (φT + φS)(r, z) (dashed line) obtained by solving
Eq. (1) using n�(r). (c) Radial density profile n(r, 0). (d)
Axial density profile n(0, z).

axial length Lp ≈ 62 mm, aspect ratio α (= Lp/rp) ≈ 6.6,
and density n0 ≈ 1.9 × 1013 m−3.

3. Thermal Equilibrium
Figure 2 indicates that the observed plasma is consis-

tent with the theoretical thermal equilibrium distribution,
with the exception of the halo distribution. In thermal equi-
librium under ideal conditions wherein the temperature is
zero and the conducting wall is located at an infinite dis-
tance from the plasma [1], the density n0 of a spheroidal
plasma confined in a harmonic potential well

φT(r, z) = −meω
2
z

4e

(
z2 − r2

2

)
,

(where me is the electron mass) is related to the aspect ratio
α by the equation

ω2
p

ω2
z
=

2
A3(α)

. (2)

Here, A3(α) = 2Q1[α(α2 − 1)−1/2]/(α2 − 1) (Q1 is a Leg-
endre function of the second kind), ωp = (e2n0/ε0me)1/2 is
the plasma frequency, and ωz is the frequency of a simple
harmonic oscillation in the potential well. Moreover, n0 is
related to the rotation frequency ωr of the spheroid [1] as

ω2
p = 2ωr(Ωc − ωr), (3)

where Ωc = eB0/me is the cyclotron frequency.
In Fig. 3, the experimental data is compared with the

equilibrium relationships given by Eqs. (2) and (3). Here,
we estimate ωz from the frequency of the detected dipole
mode (i.e., the eigenmode with the axial mode number � =
1) and evaluate ωr as the E × B drift frequency

ωr = −1
r

1
B0

∂(φT + φS)
∂r

,
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Fig. 3 Comparison between the experimental data and the equi-
librium relationships given by Eq. (2) (a) and Eq. (3) (b).
The ordinate corresponds to the left-hand-side terms of
the equations, and the abscissa indicates the right-hand-
side terms.

with the self-field potential φS obtained from Eq. (1). We
find that the observed plasma reasonably satisfies these two
relations. This result confirms that the electron plasma ob-
served in this experiment attains the theoretically expected
thermal equilibrium state.

4. Eigenmode
The frequency characteristics of the axisymmetric

electrostatic eigenmode of the spheroidal plasma are pre-
dicted from the dispersion relation [2]

1 − ω
2
p

ω2
�

=
k2

k1

P�(k1)Q′�(k2)
P′
�
(k1)Q�(k2)

, (4)

where k1 = α(α2 − 1 + ω2
p/ω

2
� )
−1/2 and k2 = α(α2 − 1)−1/2.

ω� indicates the eigenmode frequency of the axial mode
number �. The dipole mode � = 1 is a simple harmonic
oscillation of the whole plasma in the potential well, so
that ω1 = ωz. The quadrupole mode � = 2 is an oscilla-
tion where the plasma length repeatedly expands and con-
tracts [2, 5].

In Fig. 4, the observed mode frequencies ω� are plot-
ted as a function of the aspect ratio α for axial mode num-
bers � from 2 to 6. The frequency is normalized by the
dipole mode frequency ω1 (= ωz), and the dispersion rela-
tion Eq. (2) is denoted by the solid line. As shown in Fig. 4,
the dependence on α of the frequency of each mode is simi-
lar to the predicted dependence in that the mode frequency
increases with α. However, the observed frequencies are
systematically higher than the theoretical predictions.

The dispersion relation given by Eq. (4) was derived
under the assumption of ideal conditions wherein the tem-
perature is zero and the effect of image charges induced
on the conducting wall is negligible [2]. Hereinafter, the
discussion focuses on the effect of the finite temperature
and of the image charges on the eigenmode frequency. As
the analysis of the eigenmode frequency of the axial mode
number � > 2 is confirmed to yield results similar to those
of the � = 2 mode, the following results are shown only for
the quadrupole mode.

4.1 Finite temperature effect
A warm-fluid model predicts an upward shift of the

Fig. 4 Comparison between the observed (symbols) and theoret-
ically predicted (solid lines) eigenmode frequencies. The
frequencies at axial mode numbers � = 2 (�), 3 (�), 4
(�), 5 (♦), and 6 (•) are normalized by ωz and plotted as
a function of α.

Fig. 5 Comparison between the frequency shift on account of
the plasma temperature Δ fth predicted from Eq. (5) and
the frequency difference Δ fex between the observed fre-
quency and ωc

2.

quadrupole mode frequency ωh
2 on account of the increase

in the plasma temperature as follows [11]:

(ωh
2)2 = (ωc

2)2 +
5eTe

meL2
p

⎛⎜⎜⎜⎜⎜⎝γ − α
2

2

(
ωp

ωc
2

)2 d2A3(α)
dα2

⎞⎟⎟⎟⎟⎟⎠ ,
(5)

where γ = 3 is the ratio of the specific heats for one-
dimensional expansions and ωc

2 is the cold-fluid result de-
termined by Eq. (4). The last term in Eq. (5) describes the
frequency shift in terms of the temperature dependence
of the plasma shape. If this term is neglected, one ob-
tains a equation similar to the Bohm-Gross dispersion re-
lation ω2 = ω2

p+γk
2
zeTe/me with the parallel wave number

kz ≈ π(� − 1)/2Lp [5].
In Fig. 5, we compare the frequency shift Δ fth =

(2π)−1(ωh
2 − ωc

2), which is predicted by substituting the
measured electron temperature Te in Eq. (5), and the fre-
quency difference Δ fex between the observed frequency
and ωc

2. The error bars reflect the ambiguity in the mea-
sured value of the temperature. The result shows that Δ fex

is more than one order of magnitude larger than Δ fth.
Figure 6 shows the upward shift of the quadrupole

mode frequency with increasing electron temperature. The
temperature is raised from 0.1 to 1.4 eV by applying a
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Fig. 6 Dependence of the quadrupole mode frequency on the
electron temperature. The open circles indicate the ob-
served frequency and the solid line corresponds to the
theoretical prediction given by Eq. (5).

square wave to one end of the trap potential, thereby adi-
abatically compressing and expanding the plasma in the
axial direction repeatedly [12]. The rate of increase in the
observed frequency is consistent with the theoretical pre-
diction given by Eq. (5), but there remains a systematic dif-
ference of around 0.3 MHz between the observed and pre-
dicted frequencies, which is converted to Te = 0.8 eV using
Eq. (5).

These observations demonstrate that the discrepancy
between the observed and predicted mode frequencies can-
not be accounted for only by the finite temperature effect.

4.2 Image charge effect
In order to investigate the effect of image charges on

mode frequency, correlations are made between the ratio
of the observed frequency ωex

2 to the frequency ωth
2 theo-

retically predicted using Eq. (4) and the plasma parameters
α, rp, Lp, and the total electron number Np. The result
is shown in Fig. 7. The symbols � and � correspond to
α ≈ 6.5 and 9.6, respectively. Although the aspect ratio is
nearly constant (see � and � in Fig. 7 (a)), the ratioωex

2 /ω
th
2

increases with rp, Lp, and Np, i.e., the mode frequency
shifts upward with increasing plasma size. As the plasma
expands and approaches the conducting wall, the effect of
image charges induced on the wall becomes increasingly
significant. Therefore, this observation indicates that the
mode frequency increases on account of the image charge
effect.

To verify this result, we numerically calculated the
variation in the mode frequency as a function of the po-
sition of the conducting wall using a particle-in-cell sim-
ulation [5, 13]. For each wall position, the initial den-
sity distributions were obtained by solving Eq. (1) with the
common harmonic trap potential φT(r, z) and line-density
profile n�(r). The dipole and quadrupole modes were ex-
cited by displacing all the particles along the same axial
direction and by stretching the plasma along the magnetic
field line. The plasma parameters were set as rp ≈ 6 mm,
Lp ≈ 49 mm, α ≈ 8, and Te = 0.1 eV. The frequencies of
the dipole and quadrupole modes were measured by us-

Fig. 7 Correlations between the ratio of the observed frequency
ωex

2 to the frequency ωth
2 theoretically predicted using

Eq. (4) and the plasma parameters (a) α, (b) rp, (c) Lp,
and (d) the total electron number Np. The symbols � and
� correspond to α ≈ 6.5 and 9.6, respectively.

Fig. 8 Variation in the mode frequency with the position of the
conducting wall RW. (a) Frequencies of the dipole (◦) and
quadrupole (�) modes for each RW. All data points are
normalized by the frequency at RW = 45 mm. (b) Depen-
dence on RW of the ratio of the calculated frequency ωsim

2
to the frequency ωth

2 theoretically predicted using Eq. (5).

ing a least-square sinusoidal fit to the time evolution of the
center-of-mass position and the plasma length.

The mode frequencies calculated for variation in the
wall position RW from 25 to 125 mm are shown in Fig. 8.
Figure 8 (a) shows that the quadrupole mode frequency
shifts upward as the wall approaches the plasma, whereas
the dipole mode frequency does not change at all. When
compared to the theoretical prediction given by Eq. (5) [see
Fig. 8 (b)], the quadrupole mode frequency is observed to
approach the theoretical result as the conducting wall re-
cedes from the plasma. This analysis supports the above-
mentioned inference that the image charge effect causes
the upward shift of the mode frequency.

5. Conclusion
In this study, we experimentally investigated the fre-

quency characteristics of the axisymmetric eigenmodes of
a spheroidal pure electron plasma. It is confirmed that
the observed spheroidal plasma attains a theoretically ex-
pected equilibrium density distribution, with the excep-
tion of the case wherein a halo distribution surrounds the
plasma. When the eigenmode frequency observed for the
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plasma is compared with the frequency predicted by the
dispersion relation, it is observed that the absolute value
of the observed frequency is systematically higher than the
theoretical prediction, while both frequencies show a sim-
ilar dependence on the aspect ratio.

The experimental observations and numerical calcu-
lations demonstrate that the upward shift of the mode fre-
quency cannot be accounted for solely by the finite tem-
perature effect but is significantly affected by the image
charges induced on the conducting wall. This result indi-
cates that in order to carry out nondestructive diagnostics
of plasma parameters on the basis of measurements of the
eigenmode frequency, it is necessary to develop a disper-
sion relation that includes the effects of actual experimental
conditions.
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