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Application of Algebraic Approximation to Three Dimensional
Multibody Coulomb Problem: Implementation of GPGPU
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The algebraic model (ALG) proposed by the authors has sufficiently high accuracy in calculating the motion
of a test particle with all the field particles at rest. When all the field particles are moving, however, the ALG has
relatively poor prediction ability on the motion of the test particle initially at rest. Nonetheless, the ALG approx-
imation gives a good results for the statistical quantities, such as variance of velocity changes or the scattering
cross section, for a sufficiently large number of Monte Carlo trials. We have implemented a graphics process-
ing unit (GPU) using NVIDIA’s CUDA architecture into the ALG scheme for Coulomb multibody problems.
For N=28-body problem, the ALG calculations on the GPU is several times faster than on a typical CPU. The
achieved speedup ratios on an NVIDIA GTX-285 are 10.5 and 2500 against the ALG-CPU and the DIM-CPU,
respectively both on an Intel Celeron @3.06 GHz.
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1. Introduction
Since it is difficult to rigorously deal with multi-

body Coulomb collisions, the current classical theory [1,2]
considers them as a series of temporally-isolated binary
Coulomb collisions within the Debye sphere. We have
proposed the algebraic analysis approximation (ALG) for
Coulomb multibody interactions [3–5]. When all the field
particles are moving, the ALG has relatively poor predic-
tion ability [4,5] on the two-dimensional motion of the test
particle initially at rest. Nonetheless, the ALG approxima-
tion gives excellent results for the statistical quantities [5],
such as variance of velocity changes or the scattering cross
section, for a sufficiently large number of Monte Carlo tri-
als.

In addition, the ALG scheme conserves the angular
momentum, as well as linear momntum, of the entire sys-
tem. The conventional Coulomb collision models, such
as the Takizuka-Abe binary collision model [6], treats
Coulomb interactions only in the velocity space. These
models cannot be applied to problems in which the nu-
merical conservation of total angular momentum is crucial.
One of such problems includes the spontaneous plasma ro-
tation [7, 8].

In this paper, we will report implementation of the
general purpose graphics processing unit (GPGPU) using
CUDA [9] architecture into our ALG scheme. CUDA is a
general purpose parallel computing architecture developed
by NVIDIA Corporation on several NVIDIA graphics pro-
cessing units (GPUs).
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2. Algebraic Approximation
As shown in Fig. 1 the scattering angle, χ ≡ π − 2θ0,

for a binary interaction is given by b = b0 tan θ0, where b
is the impact parameter, b0 ≡ e2/4πε0μg

2
0 corresponds to

χ = π/2 scattering, and g0 the initial relative speed at r =
∞ and θ = −θ0. The angular component of the equation
motion gives the well-known invariant of

r2 dθ
dt
= const = bg0, (1)

and the radial component is given by

d2r
dt2 =

g2
0b0

r2

(
1 +

b0

r
tan2 θ0

)
. (2)

The first term in the parentheses on the right hand side of
Eq. (2) stands for the Coulomb force FC ∝ r−2. This force
is much smaller for small angle scattering, i.e., χ � 1, than
the second term. This latter force scales as Fa ∝ r−3 and re-
sults from the conservation of angular momentum Eq. (1).
At the closest point rmin = r (θ = 0) shown in Fig. 1, we
have

b0 tan2 θ0
rmin

� 2
χ
� 1. (3)

As shown above, the r-dependence of Fa ∝ r−3 is
steeper than that of Fc ∝ r−2, the change in momentum
p ≡ μg is almost due solely to Fa near r = rmin. As
a consequence, the exact hyperbolic (or occasionally el-
liptic) trajectory for the particle can be approximated as a
broken line with an impulse force of

μΔg = 2μg0 cos θ0ex = 2μg0 sin
χ

2
ex, (4)
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Fig. 1 Unperturbed relative trajectory r = r (θ) in an orbital
plane for the repulsive force. The scattering center is at
the origin. An impact parameter is b = b0 tan θ0.

near the closest point [5]. With this in mind, we have ap-
proximated a multibody problem to a series of binary de-
flections near their closest point.

The binary Coulomb and gravitational interaction
conserves the relative angular momentum L, and the mo-
tion is in the so-called orbital plane perpendicular to L.
The application of the ALG method, therefore, to three di-
mensional systems is straightforward.

2.1 Coordinate transformation
In order to apply the above binary interaction approx-

imation (ALG) to three-dimensional multibody cases, first
we seek for a field particle that gives the test particle an im-
pulse force at the earliest time. For this purpose, it is con-
venient to transform the coordinate system from the origi-
nal three dimensional (x, y, z) coordinates to a two dimen-
sional (ξ, η) ones, in such a way that the third axis, say ζ,
is set parallel to the angular momentum L = r × μg ≡ Leζ ,
and the relative velocity g =

(
gξ, gη

)
= (0, g) = geη, as

shown in Fig. 2.
Then the relative position r ≡ ri−r j between particle-i

and particle- j has a ξ-, an η-, and a ζ-coordinates of

ξi j = r · eξ, ηi j =
r · g
g
, ζi j = 0, (5)

where the unit vector eξ is defined as eξ ≡ eζ × eη = L/L×
g/g. When ηi j < 0 the two particles are approaching, while
they are moving away for ηi j > 0.

The particle moves in the direction parallel to the η-
axis with a constant velocity of g, and is to interact at(
ξi j, 0

)
with this field particle in a time interval of

Δti j = −ηi j

g
. (6)

Accordingly, the field particle that the test particle is given
an impulse force at the earliest time has the smallest posi-
tive Δti j, i.e.,

Δtmin ≡ min
(
max

(
0,−ηi j

g

))
, for 1 ≤ i, j ≤ N. (7)

Fig. 2 Coordinate transform from the (x, y, z) to (ξ, η), in such a
way that the third axis, say ζ, is set parallel to the angu-
lar momentum L = r × μg = Leζ , and g = geη. In this
coordinate system, the scattering angle χ, i.e., the impact
parameter b and the time of the interaction Δt are approx-
imately given by ξ and η, respectively. The relative veloc-
ity at time t and t+Δt, are g (t), and g (t + Δt) = g (t)+Δg,
respectively.

We have ignored the effect of field particles with ηi j > 0,
since the interaction is completed at η = 0 in our approx-
imation. In other words, such field particles have already
interacted with the test particle in the past.

When the test particle moves to the position of
(
ξi j, 0

)
,

it changes the relative velocity by Δgi j as

Δgi j = 2 g sin
χi j

2
eξ, (8)

χi j

2
� arctan

b0

ξi j
, (9)

where the pair i and j satisfies Eq. (7), and we have ap-
proximated that the impact parameter is given by b = ξi j

in Eq. (4) as shown in Fig. 2. Thus, in the (ξ, η) coordinate
system, the field particle position ξi j and ηi j correspond
to the velocity change Δgi j and the time of the interaction
Δti j, respectively.

2.2 Changes in position and momentum
In an N-body problem, changes in the position of each

particle-I, (1 ≤ I ≤ N), during the time interval Δti j for a
interacting particle pair (i, j), is given by

ΔrI = uIΔti j, (10)

irrespective of whether they are interacting, I ∈ {i, j}, or
not, since they are assumed to be moving straight in the
ALG approximation.

On the other hand, changes in linear momenta of the
interacting particle pair (i, j), during Δti j = Δtmin, are given
by

Δpi ≡ miΔui = +μi jΔgi j, (11)

Δp j ≡ m jΔu j = −μi jΔgi j, (12)

since μ ji = μi j and Δg ji = −Δgi j by definition. Therefore
the ALG approximation conserves the binary momentum,
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Table 1 Relative errors in invariants with the ALG for the number
of particles N = 28, 1332, and 9292.

# of particles Relative errors in
N P L E
28 3 × 10−16 4 × 10−16 2 × 10−7

1,332 4 × 10−16 3 × 10−14 7 × 10−7

9,262 3 × 10−15 2 × 10−13 4 × 10−7

pi j ≡ pi + pj, since, from Eqs. (11) and (12),

Δpi j = Δpi + Δp j = 0, (13)

in the system in principle. Furthermore, the interaction
between i and j conserves the binary angular momentum,
Li j ≡ ri j × pi j, as

ΔLi j ≡ Δri j × pi j +
(
ri j + Δri j

)
× Δpi j = 0, (14)

since both cross products are those between two vectors
with the same direction, as shown in Fig. 2.

Any other particle-k (k � i, j) does not change its ve-
locity, i.e.,

Δpk = mkΔuk = 0, (15)

ΔLk = ukΔti j × pk = 0, (16)

since they are not interacting during the interval of Δti j.
We have, thus far, shown above that the binary inter-

action between particles i and j conserves linear and angu-
lar momenta, i.e., pi j

(
t + Δti j

)
= pi j (t) and Li j

(
t + Δti j

)
=

Li j (t). It is easy to show the total liner momentum and total
angular momentum of the entire system are conserved with
our model. Table. 1 lists the relative errors in invariants
with the ALG for the number of particles N = 28, 1332,
and 9292. The invariants include the linear momentum
P =

∑N
i=1 miui, the angular momentum L =

∑N
i=1 ri × miui,

and the total energy E =
∑N

i=1 miu2i /2 +
∑

i
∑

j e2/4πε0ri j

of the entire system. The relative errors in the total mo-
menta P and L are due to the finite-bit calculation on the
computer. The relative errors in total energy E, of order of
10−6 are large compared with those of the total momenta,
since most particles move freely ignoring the interparticle
forces in our model.

3. Test Calculation
In the following test calculations, protons in a hydro-

gen plasma with temperature of T = 10 keV and number
density of n = 1020 m−3 will be analyzed.

3.1 Convergence with N
Figure 3 shows the N-dependence on changes in posi-

tion Δr and in velocity Δu of a test particle. From the fig-
ure, changes in position converge at around N ∼ 700, and
those in velocity are almost independent from N. There-
fore, in order to make statistical calculations concerning
velocity changes, such as the scattering cross section, the
number of particles N needs not be large; N = 28 will be
adopted in the next section.

Fig. 3 Convergence of the ALG with the number of particles N:
Changes in position and in velocity of a test particle.

3.2 Variance in velocity changes
Figure 4 shows the variance of change in velocity,

〈
Δu2

〉
≡ 1

NMC

NMC∑
IMC=1

1
N

N∑
i=1

(Δui)2 , (17)

of all the particles for three-dimensional Coulomb N =28-
body problem, where NMC stands for the number of Monte
Carlo trials. With the direct integration method, DIM, cal-
culation ends up to the number of Monte Carlo trials of
NMC = 108, since it needs much more CPU times than the
ALG. The agreement between the ALG and the DIM is
excellent. As the DIM in this study, we have used the six-
stage fifth-order Runge-Kutta-Fehlberg method known as
the RKF65 [10,11] with the absolute numerical error toler-
ance of 10−16. Several jumps seen in Fig. 4, such as those
at NMC ∼ 7× 106, 9× 107, and 3× 108 are due to close en-
counters, i.e., large angle scattering with Δvi/gth ∼ O (1).
If a head-on collision of Δgi j = 2 g ∼ 2gth between the pair
(i, j) occurred during the next, i.e., the 5×1010+1st, Monte
Carlo trial in this 28-body system, it alone could raise the
dimensional variance by

2 × g2
th

28 × (
5 × 1010 + 1

) ∼ 0.14 × 10−11 g2
th. (18)

Thus the variance by using the ALG, at the number of
Monte Carlo trials NMC = 5 × 1010, can be expressed as

〈(
ΔuALG

)2〉 ∼ (
1.88 ± 0.14

)
× 10−11g2

th. (19)

This calculation for variance in velocity changes corre-
sponds to a situation, in which the motion of a test pro-
ton in the plasma is analyzed during a time interval of
N × NMC × Δt = N × NMC × n−1/3/gth ∼ 140 ms.

The CPU time taken for one Monte Carlo trial of the
DIM is 31 ms and that of the ALG is 0.13 ms on a com-
puter with an Intel r© Celeron r©D 346@3.06 GHz. That is,
the ALG achieves 263 times speed up for N = 28 body
problems.
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Fig. 4 Normalized variance of velocity changes for N = 28 by
using the ALG with NMC = 5 × 1010, while up to NMC =

108 for the DIM.

Table 2 CPU times for N = 28 with and without GPU.

method device CPU time [ms] ratio
DIM CPU 31.0 2500
ALG CPU 0.13 10.5
ALG GPU 0.0124 1

The most CPU-time-consuming part of the ALG
scheme is finding Δtmin in Eq. (7), which can be executed
in parallel on GPUs. As shown in Table 2, CPU/GPU time
for N = 28 by using the ALG with NMC = 5 × 1010 is
180 hr (6.4 × 105 sec) on a GPU; NVIDIA GTX-285 with
the RAM of 1 GB, the number of cores of 240 at the clock
rate of 1.48 GHz. The average calculation time on the GPU
is around 0.0124 ms per one ALG calculation, so that the
speedup ratios of the GPU calculation are 10.5 and 2500
against the ALG-CPU and the DIM-CPU, respectively.

3.3 CPU time with and without GPU
Figure 5 shows the CPU time for the ALG and the

DIM. The number of particles dependence of the CPU time
for the ALG approximation, τCPU

ALG, is in proportion to N3.02,
as

τCPU
ALG ∼ 5.56 × 10−9N3.02. (20)

Similarly, τCPU
DIM for the DIM is:

τCPU
DIM ∼ 3.06 × 10−5N2.34, (21)

from which the ALG is suited for multibody problems for
moderate number of particles of N � 3 × 105. Also de-
picted in Fig. 5 is the calculation time, τGPU

ALG, on a GPU,
specifically NVIDIA GTX-295, which scales as

τGPU
ALG ∼ 1.88 × 10−9N2.75. (22)

The ALG on the GPU is suited for multibody problems
for huge numbers of particles of N � 2 × 1010 which is
several orders of magnitudes larger than the total number
of particles in the Debye sphere in typical fusion plasmas.

Fig. 5 CPU time vs the number of particles N with fitting lines,
τCPU

ALG ∼ 5.56 × 10−9N3.02 for the ALG on a CPU in green,
and τCPU

DIM ∼ 3.06 × 10−5N2.34 for the DIM on the CPU
in red. Also depicted are CPU times for ALG-GPU cal-
culations with a fitting line τGPU

ALG ∼ 1.88 × 10−9N2.75 in
bule.

4. Conclusion
We have implemented a graphics processing unit

(GPU) using NVIDIA’s CUDA architecture into the ALG
scheme for Coulomb multibody problems. For N=28-body
problem, the ALG calculations on a GPU is several times
faster than on a typical CPU. The achieved speedup ra-
tios on NVIDIA GTX-285 are 10.5 and 2500 against the
ALG-on-CPU and the DIM-on-CPU, respectively both on
an Intel Celeron @3.06 GHz.
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