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Emission of Visible Light by Hot Dense Metals
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We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature
distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for
light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the
material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion
plasmas.
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1. Introduction
You can see light from glowing hot metals - the kitchen

stove, tungsten filaments, or the walls of fusion experi-
ments. It’s a disappointment not to find a satisfactory the-
ory for this emission by hot metals in our favorite books
of electro-dynamics [1], optics [2] and solid-state physics
[3], or even in general textbooks of physics [4].

A metal is a dense plasma having a plasma frequency
�ωp ∼ 10-15 eV. Visible light has �ω ∼ 2 eV, so �ω� �ωp.
A plasma is overdense to light of frequency ω if ω < ωp

and Re[ε(ω)] < 0, where ε(ω) is the frequency-dependent
dielectric function. Light reflects from a smooth metal sur-
face and only an evanescent wave penetrates over a skin
depth δ ∼ c/ωp ∼ 10 nm. Electrons deep in the metal emit
much less light than electrons near the surface even if they
have the same local density-temperature conditions; emis-
sion is suppressed because the electrons only connect to
the exponential tail ∼ exp(-x/δ) of the light waves.

We consider metals such as W, Au, Al, Pd, Mo, or Pt.
The cold-matter optical properties are summarized by a di-
electric function ε(ω) [5]. When they are heated to “Warm
Dense Matter” (WDM) temperatures ∼ 1 eV, we will have
to guess ε(ω) and compare to experiments. In order to do
that comparison we need equations that apply for an arbi-
trary dielectric function ε(ω). At high temperatures metals
evaporate and expand. For very hot metal, the expansion
is a release or rarefaction flow; hydrodynamic calculations
predict the ρ, T profile [6]. The metal cools as it expands,
so the outer layers are cooler than the interior.

In WDM experiments, the temperature has strong gra-
dients. WDM density and temperature may vary over dis-
tances much less than the wavelength of light. In this
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case the emission cannot be calculated from absorption by
Kirchhoff’s law, so we need a microscopic emission the-
ory.

The equation of radiative transfer gives the radiation
energy flow as an integral along light ray paths [6]. This
equation applies when the spatial gradients are small over a
photon mean free path and very small over the wavelength
of light. Neither condition is satisfied for most WDM ex-
periments. In addition, light rays are undefined in over-
dense plasma because the index of refraction

√
ε = n + ik

is a complex number. Radiative transfer is a form of heat
conduction, described by Fourier’s law, q = −k grad T , and
obeys certain general rules: for example, when heat flows
from THot to TCold, then between those points the tempera-
ture is necessarily between THot and TCold.

Nonlocal transport is a different type of heat flow,
in which a conduction channel (usually having a limited
channel capacity or flux limit) carries heat energy limited
by an injection impedance at the hot end and an extraction
impedance at the cool end. The channel might traverse
colder or hotter matter without being coupled enough to
equilibrate locally. In the cases we are considering, the
conduction channel is the overdense electromagnetic field.
In this nonlocal transport theory the emitted radiation is
given by an integral over the sources, which are fluctuat-
ing microscopic currents. The theory naturally invokes the
Weiner-Kinchin theorem for stationary random processes
and the Kubo formula (fluctuation-dissipation theorem).
With these equations the emission is given by an integral
over the local dielectric function.

In this paper we discuss emission of light in three
situations of progressively increasing temperature: small
droplets of liquid metal, emission from hot metal surfaces
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and finally, emission from hot fusion plasmas described by
Molecular Dynamics (MD) particle simulation.

2. Emission by Small Droplets of Liq-
uid Metal
Accelerator-heated WDM experiments on an experi-

mental facility in the Lawrence Berkeley National Labo-
ratory rapidly heat a submicron-thick foil to several thou-
sand K. The foil appears to break into small droplets of
liquid metal and time-resolved emission spectra are mea-
sured. We would like to extract information from those
spectra to decide the temperature of the hot material and,
if possible, the size of the droplets. At the conditions of
the experiments the metal inside the droplets probably has
uniform density and temperature.

In this case Kirchhoff’s law applies and we can calcu-
late the emission from the absorption cross-section A(ω).
The total power emitted into 4π steradians is

dE
dt
=

∫
(�ω)3

π2�3c2

A(�ω)(
e�ω/kT − 1

)d�ω. (1)

A(�ω) is the absorption cross-section for a plane wave ap-
proaching the droplet. We calculate A(�ω) from Mie the-
ory of light scattering by a small droplet [1, 2, 7].

The electromagnetic fields are represented as a series
of vector spherical harmonic functions. Inside the droplet
there is an evanescent wave, which has a complex wave-
vector

K = (ω/c)
√
ε.

To evaluate the formulas we need Bessel functions j�(Kr)
for complex wave-vector K and for large index � (up to
100). To generate these functions we use a recursion for-
mula iterating down (� → � − 1) for the Bessel function
j� and iterating up (� → � + 1) for the Neumann function
n�. A Bessel-function theorem helps evaluate the volume-
integral of the Joule heating to calculate the absorption.
We evaluate the formulas using measured dielectric func-
tions [5] which are valid for room-temperature material.

A useful check of the computer code is the compari-
son to an analytic formula (Eq. 93-4 of reference [4]) valid
for droplets that are small compared to the wavelength; our
code agrees accurately with this formula for R� λ.

A comparison to geometrical optics agrees to a few
percent for large spheres. Many textbooks warn us that
geometrical optics is inaccurate for scattering of light from
smooth spheres, due to interference phenomena associated
with wave optics [2, 7, 8]. For large spheres, absorption or
emission occurs mainly on the forward surface, so better
agreement is not surprising.

Theory predicts anisotropic absorption from a plane-
polarized plane wave: absorption on the two sides where E
points toward the sphere is stronger than absorption on the
sides where E is parallel to the surface. This is because p-
polarized light is absorbed better than s-polarized light (see

below). The emission from a small sphere is isotropic and
unpolarized. It is typically about 10% of the black-body
emission.

The droplet calculations are only relevant in a lim-
ited temperature range between melting and boiling tem-
peratures. At higher temperatures, evaporation or rar-
efaction flow will rapidly produce a nonuniform density-
temperature profile and we must calculate the emission
without using detailed balance.

3. Emission by a Uniform Hot Metal
For a hot metal layer in which the temperature is uni-

form we can again calculate the emission from the absorp-
tion coefficient using Kirchhoff’s law. This special case
gives a useful test for the general theory of emission.

To calculate the absorption during reflection from a
flat metal surface, one solves the Maxwell eqs. for the clas-
sical E, B fields. The energy flow toward the material is S x

= x-component of the Poynting vector, where x is the di-
rection into the material (the surface is the yz plane). The
energy absorption is

dS x

dx
= −Re[σ(ω)]

〈∣∣∣Ē(x)
∣∣∣2〉

= local Joule heating. To evaluate this one needs the high-
frequency conductivity σ(ω), related to the dielectric func-
tion by

ε(ω) = 1 + 4π iσ(ω)/ω (2)

so

Re[σ(ω)] = ω/4π Im[ε(ω)]. (3)

Theory predicts that p-polarized absorption is larger than
s-polarized absorption

Ap > As. (4)

The s- and p-polarized absorptions differ, in part, because
p-polarized light induces a surface-charge density.

Laser experiments readily measure absorption As, Ap

and even the rotation of the polarization ellipse if the inci-
dent light is mixed s- and p-polarized. This technique of
ultra-short pulse pump-probe ellipsometry can give quan-
titative information about laser-heated materials with sub-
picosecond time resolution [9]. The absorption theory
is well-tested by laser experiments and measurements on
cold matter.

If the metal has constant temperature and density, the
absorption coefficients are given by the Fresnel formulas,
evaluated with the optical constants n and k determined by
ε(ω) = (n+ ik)2. However the Fresnel formulas fail as soon
as the metal surface begins to expand [10].

4. Emission by a Nonuniform Metal
Surface
A general theory of emission is more difficult. We

examine the absorption and emission for a normal mode
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of the radiation field characterized by a free-space wave-
vector (kx, ky, kz). Light absorption is coherent and stim-
ulated emission is a coherent reduction of the absorption,
but for the materials considered here the spontaneous emis-
sion is incoherent.

Electric and magnetic fields made by the sources are
linearly related to the sources,

E = GE ◦ j and B = GB ◦ j, (5)

where the Green’s functions GE and GB depend on polar-
ization (selected by the direction of the current fluctuations
j). The Green’s functions include the coherent response
of the medium (overdense “refraction”, absorption, stimu-
lated emission) as decribed by the dielectric function ε(ω).
The G’s are constructed as products of matrices for layers
of target material; they decrease like exp(−Re[γ]x). Here
γ is the x-component of the wave-vector inside the metal,

γ2 = (ω2/c2)[sin2θ − ε(ω)]. (6)

Of course the electric field oscillates rapidly and its
time-average is zero. We examine a quadratic quantity, the
Poynting vector

S = c(E × B)/4π. (7)

S is a sum over the incoherent sources, which are micro-
scopic currents in the material. The emission can be writ-
ten symbolically:

S ∼ (c/4π) ∫ GE × GB ◦ < j ◦ j > dx (8)

Here < j ◦ j > is the current fluctuation, related to the
current-current autocorrelation function by the Weiner-
Kinchin theorem. The Kubo relation connects this quantity
to the real part of the AC electrical conductivity Re[σ(ω)]
which is in turn proportional to Im[ε(ω)], the imaginary
part of the dielectric function.

The difficult part of this calculation is the calculation
of the Green’s functions, especially for p-polarized light,
but there is a simple and convincing way to check the cal-
culation.

For a uniform metal plate (having constant composi-
tion, density and temperature) the emitted spectrum ex-
actly equals the absorption from a blackbody spectrum
having the same temperature, i.e., the power emitted from
a given layer into a given solid angle in a given frequency
range equals the power absorbed in the same layer from
the same solid angle at the same frequencies.

The equations predict a phenomenon of overdense ra-
diation transport which we have not seen discussed in the
scientific literature. When a source at depth xS makes elec-
tric and magnetic fields as in Eq. (5), some of the energy
of these fields is absorbed in a second layer at depth xT .
The Green’s functions describe that absorption through the
Im[ε] in the wave-equation. However, if the material tem-
perature is uniform (homogeneous), the second region at

xT also emits radiation and some of that penetrates back to
xS and is absorbed there. These two absorptions are ex-
actly equal if the temperatures T (xS ) and T (xT ) are equal,
and that is a powerful consistency check for the theory
(Onsager symmetry). If the two temperatures are not equal,
there is a net heat conduction from hot to cold. Because the
overdense radiation field typically does not have a large
energy-density (compared to the material energy-density)
this overdense transport cannot be a strong correction to
the normal electron heat conduction, but it is a powerful
check of our calculations to find that it obeys the principle
of detailed balance.

The calculations described here predict that emission
from hot metals (having smooth and clean surfaces) should
be strongly p-polarized, when seen from a sufficient angle
from the normal.

5. Polarization and Pyrometry
Polarized emission from metals was observed many

years ago (Millikan [11]), but apparently is not well
known: it is not even mentioned in modern textbooks [2].
Probably magnetic fusion machines are filled with polar-
ized visible light emitted by hot metal on the limiter, diver-
tor, etc.

In the National Institute for Fusion Science, M. Goto
et al. recently measured polarized emission for electron-
beam heated foils of W metal. The experiments observed
polarization resolved spectra of radiation from the tung-
sten surface which was heated by an electron beam. The
viewing angle to the surface was 75 degree from normal
to the surface. One component is polarized parallel (‖) to
the surface and the other (⊥) is perpendicular to it. The
temperature was estimated from the spectra. The radia-
tion is strongly polarized. The experiments study the po-
larization at different temperatures and some temperature-
dependence of the polarization was observed at the highest
temperatures. In the Lawrence Berkeley National Labo-
ratory and the University of Electro-Communication, H.
Yoneda and P. Ni have observed polarized emission from
electrically heated strips of several metals.

Optical pyrometry is a well-known way to determine
temperature from emitted light. The optical pyrometer has
limited time-response and temperature sensitivity because
it must collect enough photons to obtain accurate data. The
usual optical pyrometer is an imperfect thermometer for
another reason: one measures the emitted intensity I(ω j)
at N wavelengths, but there are almost always N + 1 un-
knowns: the N emissivities E(ω j) and the surface temper-
ature T . One can only extract a temperature by making
some assumption about the frequency-dependence of the
surface emissivity E(ω).

For this reason we propose a polarization pyrometer,
which will measure emission of the two polarizations at
several angles. In this way one can collect enough data to
unfold the unknown dielectric function and the unknown
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temperature. This is especially important for WDM where
we do not a priori know the emissivity E(ω) or dielectric
function ε(ω).

6. Radiation in Particle Simulations
Another question about emission theory arises in

molecular dynamics (MD) particle simulation which we
use to study hot plasmas at fusion ignition conditions. This
work uses large computers to perform simulations with
105-106 electrons and ions [12,13]. Previous particle simu-
lations have been performed to study charged-particle pair-
correlations, especially for strongly-coupled plasmas, but
we want to extend the method to study atomic-scale phe-
nomena that occur in fusion plasmas. We plan to include
fusion reactions and the slowing of fusion products, emis-
sion and absorption of radiation and other atomic processes
involving bound electrons on high-Z impurities. The parti-
cle simulations are based on classical MD of electrons and
ions, but the close collisions are quantum mechanical. For
example, fusion reactions only occur because of quantum
tunneling, and the radiation processes also involve quan-
tum effects.

The calculation of radiation poses a simple but im-
portant question: how to modify a classical simulation so
as to obtain the (quantum) black-body spectrum when the
simulation reaches equilibrium. (A purely classical simu-
lation would necessarily give the incorrect Rayleigh-Jeans
spectrum). Here we briefly mention two complementary
approaches to the description of radiative processes.

6.1 Close collisions: hybrid MD/MC algo-
rithm

The quantum effects are very important for high-
energy photons (having �ω > kT ) which are most impor-
tant energetically. They are emitted or absorbed in “close”
collisions with small impact parameters. To describe emis-
sion and absorption of high-energy photons, we use a hy-
brid Molecular Dynamics/Monte Carlo method. Quantum
or semiclassical cross-sections are used to describe the
radiative processes which occur during a close collision.
When the classical MD brings an electron to within a small
distance RB of an ion, control is passed to a subroutine (SB
= “small ball”) which forms a conditional probability Pcond

to emit or absorb a photon.
SB Algorithm # 1

Pcond =
σK

πR2
B

(9)

SB Algorithm # 2 (�-dependent cross-section)

Pcond =
σ1

π(2� + 1)�2/m2v2 (10)

The first algorithm is used with the Kramers cross-section
σK . MC tests are used to decide between absorption
and emission and to decide the energy �ω of the pho-
ton, guided by conditional probabilities obtained from the

cross-section [12]. The second algorithm requires a more
detailed cross-section that resolves the emission or absorp-
tion by the angular momentum of the incoming electron.
The angular momentum � is determined by the classical
position and velocity when the electron reaches the radius
r = RB.

6.2 Soft collisions: coupling to classical nor-
mal modes

Emission of low-energy photons (visible and ultravio-
let light) can be handled in a different way. Since �ω ≤ kT
for this case, a classical calculation may suffice.

We start from the normal-mode representation of the
electromagnetic field, as in non-relativistic (Coulomb-
gauge) quantum electrodynamics (QED). The electromag-
netic field is obtained from a vector potential which is ex-
panded in field amplitudes akλ (in QED akλ is a photon
annihilation operator).

A(�r, t) =
∑
k,λ

êk,λCk

[
ak,λei�k·�r + a+k,λe

−i�k·�r
]

(11)

The equation of motion for the field amplitudes is:

i�
∂ak,λ

∂t
= �ω ak,λ −

∑
p

q
c

(
vp · ek,λ

)
Cke−ik·rp(t) (12)

Here the subscript p denotes one particle (usually an elec-
tron), rp(t) and vp(t) are the particle position and velocity
vectors, λ = photon polarization, and

Ck =

(
2π�c2

Vω

)1/2

(13)

where V = quantization volume. Eq. (12) omits a second-
order term that generates Compton scattering. The change
of energy for the normal mode specified by k and λ is

�ω
∂nk,λ

∂t
= −

∑
p

q (v · ek,λ)
(
iω
c

)

×
[
a+kλe

−i�k·�rp(t) − akλei�k·�rp(t)
]

(14)

We could solve Eq. (12) numerically, but that would
require a small time-step. Instead we Fourier analyze akλ(t)
and project out the emission at frequencies near ω = c k.
(Lower frequencies ∼ k · v correspond to modifications of
the near-field Coulomb potential, e.g., magnetic effects ∼
v/c). We then multiply by the photon density of states (and
sum over polarizations), i.e. we form

dP =
∑
λ

4πk2dk
8π

�ω

[
∂nk,λ

∂t

]
emission

(15)

and obtain

dP(ω)
dω

=
∑

p

2
3

q2

c3

ω2

π

∫ ∞

0

〈
vp(0) · vp(τ)

〉
eiωτdτ

(16)
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This is also a current-current correlation function,
closely related to the Kubo formula for the electrical con-
ductivity of the plasma.

The current-current correlation function supplied by
the particle MD calculation will include various correlation
effects produced by Coulomb forces in the plasma. In this
case we again find the emission is expressed in terms of the
AC conductivity without the complications of overdense
material and nonlocal transport.

7. Summary and Conclusions
The main points of this research are

1) We study the general theory of emission of radiation by
hot dense matter.
2) Our computer codes predict light emission using mate-
rial descriptions obtained from hydrodynamic or particle
MD codes.
3) They predict that light emitted from a smooth clean hot
metal surface is predominantly p-polarized.
4) The codes provide a tool for improving the interpreta-
tion of pyrometry measurements of emission and finding a
more convincing determination of WDM plasma tempera-
tures from pyrometry measurements.
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