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The binary interaction approximation (BIA) to N-body problems is proposed. The BIA conserves total linear
momenta in principle. Other invariants, such as the total angular momentum and total energy, are conserved to
at least 12 effective digits for a two-dimensional hydrogen plasma of T = 10 keV and n = 1020 m−3. For such
a plasma, the total CPU time of the BIA is found to scale as approximately N1.9, while the conventional direct
integration method scales as approximately N3.
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1. Introduction
In an isolated N-body charged particle system, as

shown in Fig. 1, the non-relativistic equation of motion for
the i-th particle with an electric charge qi and a mass mi is

mi
dui
dt
=qi

N∑

j�i

q j

4πε0

ri − r j

|ri − r j|3 . (1)

where ri and ui stand for the position and the velocity of
the i-th particle. Hereafter, the calculation using the above
equation of motion, Eq. (1), will be referred to as the direct
integration method (DIM).

When N ≥ 3, it is well known that no exact/analytical
solution can be obtained, and one should be content with
solutions approximated by using a numerical integration
method. In principle, to arbitrary error levels, the numeri-
cal solution can be found. However, it is practically impos-
sible for the large number of particles, i.e. N ≫ 1, since
the number of force calculations on the right-hand side of
Eq. (1) is in proportion to N2. Moreover, the number of
time steps tends to increase with increasing N, so the total
CPU time should scale as N3.

The efficient, fast algorithms to calculate inter-particle
forces include the tree method [1, 2], the fast multipole
expansion method (FMM), and the particle-mesh Ewalt
(PPPM) method [3]. Efforts have been made to use paral-
lel computers and/or to develop special-purpose hardware
to calculate interparticle forces, e.g., the GRAvity PipE
(GRAPE) project [4]. The authors have recently devel-
oped an algebraic model for multibody problems [5] and
have shown that the momentum transfer cross-section with
our model is in good agreement with the exact one [5, 6].
Unfortunately, this model turns out to lack sufficient accu-
racy in predicting individual particle motions [6].

As shown in Fig. 2, which depicts the relative mo-
tion of the particle pair i and j in the center-of-mass co-
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Fig. 1 An N-body system.

ordinate system, the scattering angle, χ ≡ π − 2θ0, is
found by b = b0 tan θ0, where b is the impact parameter,
b0 ≡ e2/4πε0μg

2
0 corresponds to χ = π/2 scattering, and

g0 is the initial relative speed at r = ∞ and theta = −θ0.
Here μ ≡ mim j/(mi + m j) is the reduced mass. In the bi-
nary system with an impact parameter b, a typical velocity
change Δg in the relative velocity is given by

Δg = 2g0 sin
χ

2
∼ εg0, ε ≡

b0

Δ�
. (2)

where Δ� is the average interparticle separation.
In N-body systems with ε � 1, such as the fusion

plasmas, Eq. (2) suggests that three-or-more-body interac-
tion is of the order of ε2 and can be ignored. Note that
the Debye length λD in fusion plasmas generally satisfies
λD � Δ�, thus, typical binary interaction is characterized
by the nondimensional parameter ε. This parameter is of
the order of U/K, where U and K stand for the potential
and kinetic energies, respectively.

In this study, we will propose the binary interaction
approximation (BIA) to the N-body systems with ε � 1,
and compare it with the DIM, both using the six-stage fifth
order Runge-Kutta-Fehlberg (RKF65) integrator [7,8] with
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Fig. 2 Unperturbed relative trajectory r = r (θ) in an orbital
plane. The scattering center is at the origin. Impact pa-
rameter is b = b0 tan θ0.

an absolute numerical error tolerance of 10−16.

2. BIA: Binary interaction approxim-
ation to N-body problems
The equation of relative motion for the particle pair

(i, j) in an N-body system used by the BIA is

μi j
dgi j

dt
=

qiq j

4πε0

ri j

r3
i j

. (3)

where ri j = ri − r j stands for the relative position, gi j =

ui − u j is the relative velocity, and μi j = mim j/
(
mi + m j

)

is the reduced mass. In the BIA, the above equation is
integrated, completely ignoring the other particles, from
t = 0 to t = Δt to yield Δri j and Δgi j. The total number of
integrations is NC2 = N (N − 1) /2 for an N-body problem.
The individual changes in position Δri, and velocity Δui,
of the i-th particle are

miΔri = miuiΔt +
N∑

j�i

μi j

(
Δri j − gi jΔt

)
. (4)

miΔui =
N∑

j�i

μi jΔgi j . (5)

for i = 1, 2, · · · ,N. Note that the term within the paren-
theses, δri j ≡ Δri j − gi jΔt as shown in Fig. 3, on the right-
hand side of Eq. (4) vanishes when the interaction between
pair (i, j) vanishes. In other words, the BIA scheme is ex-
act for free particles. Note also that the total momentum
P ≡ ∑N

i=1 miui is kept constant with this approximation,
since, from Eq. (4) and μi j = μ ji,

N∑

i=1

miΔui =
N−1∑

i=1

N∑

j=i+1

μi j

(
Δgi j + Δg ji

)
= 0 . (6)

Fig. 3 Relative motion for particle pair (i, j). Scattering center is
at the origin. The change in position of the particle with
a mass μi j is Δri j. If no interaction occurs, the change in
position is gi jΔt during a time interval of Δt.

which also guarantees the center of mass position RCM to
be exact,

RCM (Δt) = RCM (0) + GCM (0)Δt, (7)

where GCM is the center of mass velocity.

3. Calculation
3.1 Initial condition for an N = 122-body pr-

oblem
Figure 4 depicts the initial condition for a two-

dimensional N = 122-problem, in which there are 61 pro-
tons and 61 electrons. Note that only 26 particles near
the origin are depicted in the figure. In this and the fol-
lowing figures, positions are normalized by the interpar-
ticle separation Δ� ≡ n−1/3 and velocities by the relative
thermal speed among electrons, gee

th =
√

2veth. Squares
with arrows in blue in Fig. 4 represent electron positions
and velocities, and diamonds with arrows in red repre-
sent protons. Spatial distribution is uniform with an av-
erage particle distance being Δ� = n−1/3, and the velocity
distribution is Maxwellian for both species with tempera-
tures of T = Telectron = Tproton = 10 keV. A number den-
sity n = 1020 m−3 is assumed, which yields the parameter
ε = 1.67 × 10−7 � 1.

Since we have assumed Maxwellian velocity distribu-
tions, no particle has a velocity of exactly zero, i.e., no
particle at rest. In terms of numerical errors, however,
we have found that the BIA method has given larger nu-
merical errors, especially in position, for particles at rest
than for those in motion. For this reason, we have inten-
tionally assigned zero velocity to one proton at the origin
(X, Y) = (0, 0), as shown in Fig. 4. The trajectories of this
proton as well as a typical electron will be shown in the
next section.

3.2 Trajectories of a proton and an electron
The 122-body system is integrated for Δt ≡ Δ�/gee

th ,
i.e., the time for the electron with its thermal speed to travel
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Fig. 4 Initial positions normalized by the interparticle separa-
tion Δ� ≡ n−1/3 of an N = 122-body problem. Only
26 particles near the origin are depicted. Squares with
arrows in blue represent the electron positions and veloc-
ities, and diamonds with arrows in red represent protons.
Spatial distribution is uniform for both protons and elec-
trons. The Maxwellian velocity distribution is adopted
for a given temperature T = Telectron = Tproton.

Fig. 5 Motion of a proton initially at rest in the configuration
space (left), and in the velocity space (right) for the
N =122-body system. Symbols represent the initial and
final position calculated with the BIA. The particle starts
at the diamonds and moves along lines which are calcu-
lated with the full N-body integration, i.e., the DIM.

the average interparticle separation Δ� ≡ n−1/3. Figures 5
and 6 show the trajectories in the configuration space (X, Y)
on the left and velocity space (U,V) on the right for a pro-
ton initially at rest and a moving electron, respectively. In
both figures, the diamonds labeled ‘initial’ are initial points
at t = 0. The lines are trajectories obtained by using the
DIM. Triangles indicate the final points at t = Δt with the
BIA. The agreement between the BIA and the DIM is ex-
cellent.

As shown on the right in Fig. 6, the complicated
change in velocity with time, or the acceleration, is typ-
ically reproduced well with the BIA, in which three-or-
more-body interactions are ignored.

Fig. 6 Motion of an electron for the N =122-body system. Leg-
ends are the same as in Fig. 5.

Table 1 Effective digits for calculated invariants of motion and
CPU time for N = 122. PX and PY are the total linear
momenta, LZ is the total angular momentum, E is the total
energy of the system.

method PX PY LZ E CPU time
DIM 16 15 16 16 3.4
BIA 16 15 15 12 0.2
unit digit sec

3.3 Errors and effective digits of invariants
There are four invariants of motion in an isolated

two-dimensional system: the total linear momenta P =
(PX , PY), the total angular momentum LZ , and the total en-
ergy E. Effective digits for the calculated invariants of mo-
tion and the CPU time for N = 122 are listed in Table 1. In
the table with ri = (Xi, Yi), and ui = (Ui,Vi),

PX =

N∑

i=1

miUi . (8)

PY =

N∑

i=1

miVi . (9)

are the total linear momenta,

LZ =

N∑

i=1

mi (XiVi − YiUi) . (10)

is the total angular momentum, and

E =
1
2

N∑

i=1

miu
2
i +

1
4πε0

N−1∑

i=1

qi

N∑

j=i+1

q j

|ri − r j| . (11)

is the total energy of the system.
Note that 15–16 effective digits is the maximum for

64-bit calculation on the computer used in this study. In
the case of the DIM, the effective digits for all invariants
reach this maximum, whereas the total energy conserva-
tion for the BIA is 12 digits, worse than the DIM which
is generally the case. The angular momentum conserva-
tion for the BIA happens to be 15 digits for this particular
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initial conditions for N = 122-body problem. The conser-
vation in LZ , however, is generally close to that of E for
different initial conditions and the numbers of particles N.

As for the CPU time, the BIA is 17 times faster than
the conventional DIM for N = 122. Since the speed-up
ratio depends essentially on the number of particles N, cal-
culations for different N will be examined in the following
subsection.

3.4 CPU time dependence on N
We made a calculation similar to the foregoing section

while varying the number of particles N. The CPU time
dependence on N is depicted with fitting lines in Fig. 7,
in which CPU time inversions are found for the DIM, i.e.,
longer CPU time τCPU

DIM (N) > τCPU
DIM (N′) for fewer particles

N < N′ at around N ∼ 700 and 1600. Such inversions can
occur because the integrator used here, RKF65, controls
the time-step size during the calculation according to the
given error tolerance. The CPU time for the DIM scales as

τCPU
DIM ∼ 1.2 × 10−5 × N2.7 sec. (12)

and that for the BIA as

τCPU
BIA ∼ 3.4 × 10−5 × N1.9 sec. (13)

both using the RKF65 with the same absolute error toler-
ance of 10−16. Also, BIA(1) is the CPU time to calculate
only one particle, which scales as

τCPU
BIA(1) ∼ 1.1 × 10−5 × N1.0 sec. (14)

If we are interested in the motion of only one test
particle-i at a time t = Δt from initial conditions at t = 0,
it is possible with the BIA to calculate ri (Δt) and ui (Δt)
completely in parallel, since it is based on the principle
of superposition of Δri j and Δui j using Eqs. (4) and (5).
For example, for an 108-body problem, which corresponds
to full three-dimensional Coulomb interactions in a fusion
plasma within the Debye sphere, the DIM would need a
CPU time of 3 × 108 years, while the BIA would require
less than an hour to calculate a test particle motion.

As was shown on the right in Fig. 6, the temporal elec-
tron acceleration is complicated due to its small mass. For
a given numerical error tolerance, this tends to make the
common time-step smaller and consequently make the to-
tal CPU time τCPU longer especially in the DIM. On the
other hand, the BIA with the same error tolerance as the
DIM is a pair wise variable time-step scheme, since the
time step for the pair (i, j) is independent of that for any
other pairs (i, j′).

4. Summary and Discussion
The binary interaction approximation (BIA) to N-

body problems is proposed. The BIA conserves total linear
momenta in principle, and is a pair wise variable time-step
scheme when used with an integrator using the embedded

Fig. 7 CPU time τCPU dependence on the number of particles
N on a typical PC. Red squares represent the CPU time
for the DIM with a fitting line in red, τCPU

DIM ∝ N2.7. Blue
circles represent the CPU time for the BIA with a fitting
line in blue, τCPU

BIA ∝ N1.9. Also, BIA(1) is the CPU time to
calculate only one particle, which scale as τCPU

BIA(1) ∝ N1.0.

formula, such as the Runge-Kutta-Fehlberg scheme [7, 8].
Other invariants, such as the total angular momentum and
total energy, are conserved to at least 12 effective digits for
a two-dimensional hydrogen plasma of T = 10 keV and
n = 1020 m−3, in which ε ∼ 1.67 × 10−7. The CPU time of
the BIA scales as τCPU

BIA ∝ N1.9 for such a plasma. Note that
with the BIA, it is possible to calculate only one particle’s
motion [6] with the CPU time proportional to N.

The numerical results presented here are for two-
dimensional systems with low density and high tempera-
ture, i.e., ε � 1, which is the most appropriate for the
BIA. We will soon apply the BIA to three-dimensional
cases and/or to systems with ε ∼ 1, such as gravitational
N-body systems, in the near future.
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