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The algebraic model (ALG) proposed by the authors has sufficiently high accuracy in calculating the motion
of a test particle with all the field particles at rest. When all the field particles are moving, however, the ALG
has relatively poor prediction ability on the motion of the test particle initially at rest. None the less, the ALG
approximation gives a good results for the statistical quantities, such as variance of velocity changes or the
scattering cross section, for a sufficiently large number of Monte Carlo trials. For a 108-body problem, which
corresponds to full three-dimensional Coulomb interactions within the Debye sphere in a fusion plasma, the ALG
approximation is 263 times as fast as the 6-stage 5-th order Runge-Kutta-Fehlberg method with an absolute error
tolerance of 10−16.
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1. Introduction
Since it is difficult to rigorously deal with multibody

Coulomb and gravitational collisions, the current classical
theory considers them as a series of temporally-isolated bi-
nary Coulomb and gravitational collisions within the De-
bye sphere. The efficient and fast algorithms to calculate
inter-particle forces include the tree method [1, 2], the fast
multipole expansion method (FMM) and the particle-mesh
Ewalt (PPPM) method [3]. Efforts have been made to
use parallel computers, and/or to develop special purpose
hardware to calculate interparticle forces, e.g. the GRAPE
(GRAvity PipE) project [4]. Some of the authors have de-
veloped an algebraic model for multibody problems, and
have shown that the momentum transfer cross-section with
our model is in good agreement with the exact one [5].

As shown in Fig. 1 the scattering angle, χ ≡ π − 2θ0,
is given by b = b0 tan θ0, where b is the impact parameter,
b0 ≡ e2/4πε0μg

2
0 corresponds to χ = π/2 scattering, and

g0 the initial relative speed at r = ∞ and θ = −θ0. The
angular component of the equation motion gives the well-
known invariant of

r2 dθ
dt
= const = bg0, (1)

and the radial component is given by

d2r
dt2 =

g2
0b0

r2

(
1 +

b0

r
tan2 θ0

)
, (2)

which can be analytically solved as

r (θ) =
b sin θ0

cos θ − cos θ0
.

The first term in the parentheses on the right hand side of
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Eq. (2) stands for the Coulomb force Fc ∝ r−2. This force
is much smaller for small angle scatterings, i.e. χ � 1, than
the second term Fa which scales as ∝ r−3 and results from
the conservation of angular momentum Eq. (1), since, at
the closest point rmin = r (θ = 0) shown in Fig. 1, we have

b0 tan2 θ0
rmin

� 2
χ
� 1. (3)

Thus the main force on the particle is not the Coulomb
force Fc, but Fa due to the conservation of angular mo-
mentum.

Fig. 1 Unperturbed relative trajectory r = r (θ) in an orbital
plane for the repulsive force. The scattering center is at
the origin. An impact parameter is b = b0 tan θ0. Inter-
action region is inside the circle with a radius r� = Δ�/2,
where Δ� stands for the average interparticle separation.
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2. Algebraic Approximation
Since the r-dependence on Fa ∝ r−3 is steeper than

that on Fc ∝ r−2, the momentum change in μg is almost
due solely to Fa near r = rmin. As a consequence, the exact
hyperbolic trajectory for the particle can be approximated
as a broken line with an impulse force of

μΔg = 2μg0 cos θ0ex, (4)

near the closest point as shown in Fig. 2.
With this in mind, we have approximated a multibody

problem to a series of binary deflections near their closest
point as shown in Fig. 2, in which a test particle starts at
the lower-right point, and its final point is at the upper-right
point due to the interaction with a field particle at rest.

2.1 Coordinate transformation
In order to apply the above binary interaction approx-

imation (ALG) shown in Fig. 2 to multibody cases, first
we seek for a field particle that gives the test particle an
impulse force at the earliest time. For this purpose, it is
convenient to transform the coordinate system from (x, y)
to (ξ, η), in such a way that the initial position of the test
particle is at the origin (ξ, η) = (0, 0) and the relative veloc-
ity g ≡ ui − u j is (gξ, gη) = (0, g). Then the relative position
r ≡ ri − r j has an η-coordinate of

ηi j =
r · g
g
. (5)

The particle moves along the η-axis with a constant
velocity of g, and is to interact at

(
0, ηi j

)
with this field

particle in a time interval of Δti j ≡ ηi j/g sec. Accordingly,
the field particle that the test particle is given an impulse
force at the earliest time has the smallest positive ηi j, i.e.

ηmin ≡ min
(
max

(
0, ηi j

))
, for 1 ≤ i, j ≤ N. (6)

We have ignored the effect of field particles with ηi j < 0,
since the interaction is completed at η = 0 in our approx-
imation. In other words, such field particles have already
interacted with the test particle in the past.

When the test particle moves to the position of
(0, ηmin), it changes the relative velocity by Δgi j as

Δgi j = −2g sin
χi j

2
eξ, (7)

χi j � 2 arctan
b0

ξi j
, (8)

where the pair i and j satisfies Eq. (6), and we have ap-
proximated that the impact parameter is given by b = ξi j

in Eq. (4) as shown in Fig. 3. Thus, in the (ξ, η) coordinate
system, the field particle position ξi j and ηi j correspond
to the velocity change Δgi j and the time of the interaction
Δti j, respectively. This procedure will be repeated until the
test particle leaves the prescribed interaction region, i.e.
r < Δ�/2 as depicted in Fig. 1.

Fig. 2 Algebraic trajectory (broken line) and exact trajectory
(curved line) which is a part of a hyperbola. A field par-
ticle (black circle) is on the left.

Fig. 3 Coordinate transform from the (x, y) to (ξ, η). In this co-
ordinate system, the scattering angle χ, i.e. the impact
parameter b and the time of the interaction Δt are approx-
imately given by ξ and η, respectively. The relative ve-
locity at t = 0 is g, and is g′ = g + Δg at t = Δt.

3. Calculation
The numerical results with using the direct integration

method, DIM, hereafter refers to that obtained by solving
the following equation of motion a particle-i with a charge
qi, a mass mi, and velocity ui at a position ri

mi
dvi

dt
= qi

N∑
j�i

q j

4πε0

ri − r j∣∣∣ri − r j

∣∣∣3 . (9)

As the DIM in this study, we will use the 6-stage 5-th order
Runge-Kutta-Fehlberg method known as the RKF65 [7, 8]
with the absolute numerical error tolerance of 10−16.

In the following calculations, we will assume that, ex-
cept the test particle, the field particles on the average are
randomly distributed in the phase space (r, u). In configu-
ration space, field particles are distributed with the average
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Fig. 4 The typical initial conditions of particles; (a) positions
normalized by the interparticle separation on the left, and
(b) in the particle velocity normalized by the thermal
speed on the right. The number of particles is 422.

interparticle separation, Δ�. We will consider two cases:
all the field particles are fixed at their initial positions, the
Case 1, and moving field particles, the Case 2. The typical
initial condition is depicted in Fig. 4. The numerical con-
ditions correspond to a fusion plasma with a temperature
of T = 10 keV and a number density of n = 1020 m−3.
In such plasmas, the Debye length is λD ∼ 500Δ�, where
Δ� ≡ n−1/3.

3.1 Case 1: All field particles at rest
In the Case 1, all the field particles are at rest, and one

of them locates at the origin. The test particle starts from
the position of (b,−Δ�/2) with a velocity of (0, v0). Thus b
is the impact parameter against the field particle initially at
the origin.

Figure 5 is an example out of 105 Monte Carlo calcu-
lations for an impact parameter b = 0.3Δ�, and compares
the algebraic (ALG) trajectory and the exact (DIM) tra-
jectory normalized by the interparticle separation Δ�. Note
that the DIM results are accurate up to of the order of 10−16

which is the absolute error tolerance adopted. The circles
in the figure indicate the positions at which the test parti-
cle is given the impulse force by one of 441 field particles.
The algebraic (ALG) approximation agrees well with the
direct integration method, DIM, in most cases as shown in
Fig. 5.

Depicted in Fig. 6 is the accumulated scattering cross
section σacc (b) as a function of the impact parameter b de-
fined by

σacc (b) =
∫ b

0

(
Δg

g

)2

πb db

≈ π (Δt)2

103

103b/Δ�∑
k=1

k ×
〈(
Δgk

)2
〉
, (10)

where
〈(
Δgk

)2
〉

is the variance for the impact parameter
bk = k×Δ�/103 with a Monte Carlo trials of 105 adopted in
this study. The agreement of σALG

acc (b) with the exact one,
σDIM

acc (b), is also excellent. It should, however, be noted
that all the field particles are at rest throughout the calcu-
lation in this case [5].

Fig. 5 Comparison of algebraic trajectory (denoted by ALG)
and the exact trajectory (denoted by DIM, direct integra-
tion method) in the case of two-dimensional 442-body
Coulomb collisions with an impact parameter b = 0.3Δ�.
Coordinates (x, y) are normalized by Δ�. The circles in
the figures for the algebraic trajectories stand for the po-
sitions at which the test particle is given the impulse force
by one of 441 field particles.

Fig. 6 Accumulated Coulomb scattering cross section normal-
ized by the square of the average interparticle separation,
σacc (b) /Δ�2, vs normalized impact parameter b̄ = b/Δ�
in the case of N = 442-body. See Ref. [5] for detail.

The two-dimensional total multibody scattering cross
section for b = bmax = Δ�/2 in Fig. 6 ,

σacc (bmax = Δ�/2) ∼ 2.8 × 10−8 × Δ�2, (11)

is more than 103 times the conventional binary cross sec-
tion [9, 10],

σbin = 4πb2
0 ln

bmax

b0
∼ 2.3 × 10−11 × Δ�2, (12)

with the maximum impact parameter bmax = Δ�/2. As
pointed out in Ref. [5], however, this is not the anoma-
lous diffusion. The binary interaction occurs in an orbital
plane, whereas multibody interactions are inherently three-
dimensional. Even if a field particle locates so close to the
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test particle in the (x, y) plane that the interaction results
in a large angle scattering in the 2-d calculation with, say,
z = 0, the same field particle locates not necessarily close
to the test particle with z � 0 in 3-d.

The CPU time required for the algebraic approxi-
mation is only about 20 min using a personal computer,
whereas the exact analysis requires 15 hours to integrate
the entire set of multibody equations of motion, i.e. the
DIM.

3.2 Case 2: Moving field particles.
Strictly speaking, the Case 1 does not deal with the

multibody problem, but solves the test particle motion in
the presence of the multiple field particles at rest. In the
Case 2, we will loosen the above restriction on the field
particle motion, and have applied the algebraic model to
the 442-body problem, in which there are 441 moving
field particles and a test particle initially at rest. The two-
dimensional 442-body system is analyzed for the time in-
tervalΔt ≡ Δ�/gth, i.e. the time for a particle with a thermal
speed gth to travel the interparticle separation Δ� = n−1/3.

The change in position Δr (results not shown) of the
field particles during the time interval Δt are in good agree-
ment with the exact one, since they are moving in a very
weak potential so that Δri ∼ ui (0)Δt to a good approxima-
tion. Although, the absolute value of the change in velocity
|Δu| of each particle by the ALG are of the same order as
the exact one, the orientation of Δu is not correct as shown
in Fig. 7, where the test particle starts at the upper-right
point (U,V) = (0, 0). Also depicted for reference in Fig. 7
is the final point at t = Δt by using the BIA, the binary in-
teraction approximation, proposed by the authors [6]. Note
that the BIA accurately predicts the final point of the DIM
with the absolute error tolerance of 10−16.

In spite of relatively poor accuracy in the individual
particle motion, the ALG approximation still gives a good
result for the statistical quantities, such as variance of ve-
locity changes for a large number of Monte Carlo trials,
NMC. The green circles in Fig. 8 for the ALG show the
variance of changes in normalized velocity,

〈
(Δu)2

〉
/g2

th, of
the test particle initially at rest as a function of the number
of the Monte Carlo trials NMC, in which the variance up to
NMC = 104 with red line by using the DIM is also shown.
Several jumps seen in Fig. 8 are due to close encounters,
i.e. large angle scatterings with Δvi/gth ∼ 1. At the number
of Monte Carlo trials NMC = 104, the normalized variance
by using the ALG,

〈
(Δu)2

〉
= 2.016 × 10−8 × g2

th, agrees

with that due to the DIM,
〈
(Δu)2

〉
= 2.022 × 10−8 × g2

th,
within a relative error less than 0.3 %. As will be shown in
Fig. 9 on the CPU times, the DIM for NMC = 106 Monte
Carlo trials would need a CPU time τCPU

DIM ∼ 108 sec ∼ 3
years, while only 2 × 104 sec ∼ 6 hours for the ALG, both
on a personal computer (Intel Pentium 4, 2.60C GHz).

Fig. 7 Case 2: Trajectory of the test particle initially (t = 0) at
rest, in the velocity space (U,V) normalized by the ther-
mal speed gth. There are 441 moving field particles. The
final point at t = Δt calculated by using the binary inter-
action approximation, the BIA [6], is also shown.

Fig. 8 Variance of the change in velocity,
〈
(Δu)2

〉
/g2

th, of the test
particle initially at rest, in the case of N = 442-body; the
Case 2. There are no data for the DIM beyond the Monte
Carlo trials NMC = 104, since the DIM calculation needs
much time for larger NMC.

3.3 Comparison of CPU times
In the case of moving field particles as the Case 2, the

CPU time τCPU dependence on the number of particles N =
442, 841, 1682, 3722, 10202, and 20450 is examined on
the personal computer.

The red squares in Fig. 9 stand for the CPU time of the
DIM with the red fitting line of

τCPU
DIM (N) ∼ 2.06 × 10−6 × N2.83 sec. (13)

Note that the DIM for N = 20450 was not examined since
it would take a CPU time of the order of 37 days. The
green triangles in Fig. 9 represent the ALG with the green
fitting line of

τCPU
ALG (N) ∼ 2.36 × 10−10 × N3.02 sec, (14)

and the blue circles for the BIA with the fitting line in blue,
τCPU

BIA ∼ 5.04 × 10−6 × N1.99 sec. Thus, from Eqs. (13) and
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Fig. 9 CPU time τCPU dependence on the number of particles
N = 442, 841, 1682, 3722, 10202, and 20450, on a
typical PC (Intel Pentium 4, 2.60C GHz). Red squares
stand for the CPU time for the DIM with a fitting line in
red, τCPU

DIM ∝ N2.83. Green triangles stand for the CPU time
for the ALG with a fitting line in green, τCPU

ALG ∝ N3.02.
Blue circles stand for the CPU time for the BIA with a
fitting line in blue, τCPU

BIA ∝ N1.99.

(14), the ALG scheme calculates the variance of velocity
changes 8.73×103×N−0.19 times as fast as the DIM, specif-
ically the RKF65 method in this study. In other words, the
ALG is faster than the DIM for the number of particle N
less than 5.5 × 1020. For a 108-body problem, which cor-
responds to full three-dimensional Coulomb interactions
within the Debye sphere in a fusion plasma, the ALG ap-
proximation would still be 2.63 × 102 times as fast as the
DIM.

4. Conclusion
The algebraic model (ALG) proposed by the authors

has sufficiently high accuracy in calculating the motion of
a test particle with all the field particles at rest. When all
the field particles are moving, however, the ALG has rela-
tively poor prediction ability on the motion of the test parti-
cle initially at rest. None the less, the ALG approximation
gives good results for the statistical quantities, such as vari-

ance of velocity changes, i.e. the scattering cross section,
for a sufficiently large number of Monte Carlo trials. The
CPU time of the approximation is 8.73×103×N−0.19 times
shorter than the 6-stage 5-th order Runge-Kutta-Fehlberg
method with an absolute error tolerance of 10−16.

The numerical results presented here is for two dimen-
sional systems with low density and high temperature, i.e.
the small angle scatterings χ � 1, which is the most ap-
propriate for the ALG as well as the BIA. We will soon
apply the ALG/BIA to three dimensional cases, and/or to
systems with χ ∼ 1, such as the gravitational N-body sys-
tems, in the near future.
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