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Three kinds of models are used for beam instability analyses: those based on a solid beam, an infinitesimally
thin annular beam, and a finitely thick annular beam. In high-power experiments, the electron beam is an annulus
of finite thickness. In this paper, a numerical code for a sinusoidally corrugated waveguide with a finitely thick
annular beam is presented and compared with other models. Our analysis is based on a new version of the self-
consistent linear theory that takes into account three-dimensional beam perturbations. Slow-wave instabilities in
a K-band oversized sinusoidally corrugated waveguide are analyzed. The dependence of the Cherenkov and slow
cyclotron instabilities on the annular thickness and guiding magnetic field are examined.
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1. Introduction
Backward wave oscillators (BWOs), which are high-

power microwave sources, can be driven by an axially in-
jected electron beam. In BWOs, periodically corrugated
slow-wave structures (SWSs) are used to reduce the phase
velocity of the electromagnetic mode close to the beam ve-
locity. In many high-power experiments, cold cathodes
are used, and the electron beam is a thin-walled annulus.
To confine the electron beam, a guiding magnetic field is
applied. In interactions between the beam and the elec-
tromagnetic waves, the cyclotron instability as well as the
Cherenkov instability play an important role [1–3]. Near
the cyclotron resonance or with a relatively low magnetic
field, the beam motion perpendicular to the magnetic field
cannot be ignored, and a more definitive study of BWOs
that takes is into account vertical perturbation of the beam
is required. A pioneering work for non-relativistic cases
can be seen in Ref. [4], which considers the coupling be-
tween a sheet beam and a microwave circuit. New ver-
sions of the self-consistent relativistic field theory consid-
ering three-dimensional beam perturbations have been de-
veloped based on a solid beam [5,6] and an infinitesimally
thin annular beam [7]. For the latter, the sheet boundary is
modulated due to the transverse modulation of the annular
surface. Analyses of an infinitesimally thin annular beam
need to be based on a different theory from those of thin-
walled annular and solid beams. For a finitely thick annu-
lar beam, a numerical code has been developed and eigen-
modes and slow-wave instabilities have been analysed in
Ref. [8], in which a dielectric-loaded SWS is used for sim-
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plicity. The boundary condition at the beam’s surface is
different from that of the infinitesimally thin annular beam.
The solid beam and finitely thick annular beam cases are
based on the same beam boundary condition, but the num-
ber of the boundaries is different. An annular beam of finite
thickness has outside and inside surfaces, and a solid beam
has only an outside surface.

To increase the operating frequency and/or power-
handling capability, oversized SWSs are successfully used.
The diameter of an oversized SWS is larger than the free-
space wavelength of the output electromagnetic waves by
several times or more. Electromagnetic field properties are
different from those in non-oversized cases, and the numer-
ical code needs to be improved for oversized SWSs [9].

In this work, we develop a numerical code for a sinu-
soidally corrugated waveguide with a finitely thick annular
beam and analyze slow-wave instabilities in an oversized
sinusoidally corrugated waveguide. Our numerical code
is based on the linear theory presented in Refs. [5, 6, 8]:
non-linear effects are not included. Numerical parameters
correspond to those in recent oversized BWO experiments
designed for K-band operations in a weakly relativistic re-
gion at less than 100 kV [1–3]. The organization of this pa-
per is as follows. In Sec. 2, we present a numerical method
for an oversized SWS driven by a finitely thick annular
beam. In the beam, eigenmodes due to three-dimensional
perturbation are considered. In Sec. 3, numerical results
are presented. The dependence of growth rate on the annu-
lar thickness and guiding magnetic field are examined. In
Sec. 4, the conclusion of this paper is given.

c© 2010 The Japan Society of Plasma
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2. Numerical Method
We consider the periodically corrugated cylindrical

waveguide shown in Fig. 1. The wall radius Rw(z) varies
along the axial direction z as R0 + h cos(k0z), where the
average radius R0 = 1.57 cm, the corrugation amplitude
h = 0.17 cm, the pitch length z0 = 0.34 cm, and the corru-
gation wave number k0 = 2π/z0. A guiding magnetic field
B0 is applied uniformly in the axial direction. An electron
beam propagates along the guiding magnetic field, and the
electron beam is a finitely thick annulus. The beam is uni-
formly distributed from the inside radius Rba to the outside
radius Rbb with a beam thickness Δp (= Rbb − Rba). The
average radius of the electron beam is set to Ra. The re-
gions outside and inside the beam are in a vacuum. The
temporal and spatial phase factor of all perturbed quanti-
ties is assumed to be exp[i(kzz + mθ − ωt)]. Here, m is the
azimuthal mode number, and kz is the axial wave number.
Based on this model, the dispersion relation can be derived
self-consistently considering the three-dimensional beam
perturbations and boundary conditions. For the beam, rel-
ativistic effects are considered.

Since the SWS is spatially periodic with z0, the fields
in the SWS are expressed by the sum of a spatial harmonic
series, the so-called Floquet series. The eigenfunctions for
the cylindrical system are the Bessel functions, i.e., the
mth-order Bessel functions of the first kind Jm and the sec-
ond kind Nm. They have been used in the Floquet series for
non-oversized BWO cases in which the electromagnetic
modes are volumetric waves having a strong field near the
axis.

For an the oversized BWO, the electromagnetic field
is localized near the SWS wall, as shown in Fig. 2. Blue
represents values less than 20 % of the maximum value of
the electric field: green is 20 to 50 %, and the red is more
than 50 %. All spatial harmonics are evanescent waves in
the radial direction. If the spatial harmonics are expressed
by Jm and Nm, they have extremely large imaginary parts
This causes serious problems in numerical calculations. To
avoid this difficulty, the expressions of spatial harmonics
should be the mth-order modified Bessel functions of the
first (Im) and the second (Km) kind. We improve the new

Fig. 1 Model for analysis. The cylindrical waveguide’s wall is
corrugated sinusoidally.

self-consistent analysis by replacing the Bessel functions
with the modified Bessel functions.

In the beam column (region II, Ra − Δp/2 < r <
Ra + Δp/2), two eigenmodes exist. At zero beam velocity,
these modes become the well-known O and X modes in a
magnetized plasma for perpendicular propagation (kz = 0),
and left and right circular waves for longitudinal propaga-
tion. In Ref. [5], two eigenmodes with v � 0 for arbitrary
propagation are designated as the O and X modes. In this
paper, the eigenmodes are composed of the Floquet series
due to the spatial periodicity. The axial wave number of
the p-th spatial harmonic is given by kz + pk0 The corre-
sponding vertical wave numbers are given by
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Here, γ is the relativistic factor, and ωb and Ω are respec-
tively the plasma frequency and non-relativistic cyclotron
frequency of electrons, respectively. The vertical wave
numbers kp+ and kp− correspond to the + and − signs, re-
spectively, in Eq. (1). As examined in Ref. [5], the O and
X modes have kp+ and kp− or kp− and kp+, respectively, de-
pending on the parameters. Using the O and X modes, the

Fig. 2 Electric field distribution of TM01 mode in K-band SWS
at kzz0 = π (the π point).
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axial components of the electromagnetic field in the beam
are given by
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Four coefficients are necessary and sufficient for the ex-
pressions. The amplitudes F+p , G+p , F−p and G−p of B1z are
expressed by four coefficients, D+p , E+p , D−p , and E−p , of
E1z [5].

In the inner vacuum region of the annular column (re-
gion I, r < Ra − Δp/2), the eigenmodes are the transverse
magnetic (TM) and transverse electric (TE) modes. The
axial components of the electric and magnetic wave are
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In the outer vacuum region of beam (region III, r > Ra +

Δp/2)
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Here, AEp, ABp, DV
p , EV

p , FV
p , and GV

p are constants, and

xp
2 =
ω2

c2 − kp
2 . (7)

For bounded systems, Maxwell’s equations should be
solved subject to appropriate boundary conditions. The
beam surfaces are modulated as the beam propagates. For a
finitely thick annular beam, transverse modulation appears
as an electric surface charge at the fixed boundary, as in
Fig. 3.

At the beam surfaces (r = Ra + Δp/2 and r = Ra −
Δp/2), we obtain the following four independent equations
from the boundary conditions for the tangential compo-
nents of the electric field, the axial component of the mag-
netic field, and the radial component of the electric flux
density [5, 6].
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1z = 0 ,

Eva
1θ − Eb

1θ = 0 ,

Bva
1z − Bb

1z = 0 ,

ε0Eva
1r − (ε0Eb

1r + σ1) = 0 . (8)

Fig. 3 Beam surface of finitely thick annular beam.

Here, σ1 is the surface charge density at the beam sur-
face. Superscripts “va” and “b” denote the vacuum side
and beam side, respectively, on the surface. The bound-
ary conditions correlate the coefficients of the field outside
and inside the beam and are expressed by matrix forms as
in Ref. [2], in which a dielectric-loaded SWS is used. In
our periodic case, the conditions are formally expressed for
each spatial harmonic as,
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Here,
[
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]
is a 4 × 2 matrix, and

[
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]
is a 4 × 4 ma-

trix: they are obtained from the boundary conditions after
lengthy manipulation with the help of Mathematica. Using
Eqs. (9) and (10), DV

p , EV
p , FV

p , and GV
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two coefficients, AEp and ABp, as
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At the SWS wall (r = Rw), the two electric field com-
ponents tangential to the wall (E1t in the r − z plane and
E1θ in the θ direction) should be zero,

E1z (r = Rw) = 0 and E1θ (r = Rw) = 0 . (12)

From the spatial Fourier transform of Eq. (12), the disper-
sion equation can be derived. The dispersion equation has
been derived in the previous works using this method [6,9].
The boundary conditions of Eq. (12) are reduced to the fol-
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lowing relationship between AEp and ABp,
[
D11 D12

D21 D22

]
·
[
A+
A−

]
= 0 . (13)

Here, D11, D12, D21, and D22 are matrices of an infinite
rank, and A+ and A− are column vectors with elements AEp

and ABp. The dispersion relation is obtained from the con-
dition that Eq. (13) has a nontrivial solution and is given
by

det
[
D11 D12

D21 D22

]
= 0 . (14)

In our calculation, the rank of the matrix is truncated, i.e.,
the Floquet and Fourier harmonics numbers are limited to
seven for each Dij matrix.

From the two beam surfaces of an annular beam, eight
equations are obtained. We reduce the number of equations
from eight to four, as in Eq. (11), by eliminating four coef-
ficients: D+p , E+p , D−p , and E−p . In Refs. [10,11], this kind of
reduction is not performed, and these four coefficients must
be derived numerically. This means that the matrix size
corresponding to Eq. (13) increases by at least two times
for our case. For periodic systems, a large matrix size is in-
evitable due to expantion of the Floquet and Fourier series.
The increase in matrix size due to the boundaries causes se-
rious numerical problems. It is very important to develop
a numerical code while reducing the matrix size using the
formulation of Eq. (11).

The method of this paper is based on the Rayleigh
hypothesis, which assumes that the fields inside and out-
side the corrugation are expressed by the same Floquet
series. To check the applicability of our numerical code,
the field properties based on the Rayleigh hypothesis are
compared with those obtained by direct numerical integra-
tion of Maxwell’s equations using the higher-order implicit
difference method (HIDM) [12]. The HIDM is free from
the Rayleigh hypothesis. As is pointed out in Ref. [12],
our self-consistent analysis is applicable to the oversized
BWO.

3. Numerical Result
We analyzed the dispersion relation of an oversized si-

nusoidally corrugated waveguide driven by a finitely thick
annular beam. In a system with a magnetized beam, such
as that in Fig. 2, the electromagnetic modes are a hybrid of
the TM and TE modes even in axisymmetric cases, due to
the perturbed perpendicular to the magnetic field. The let-
ters “EH” and “HE” are used to designate the hybrid mode.
In this paper, TM is dominant in the EH mode, and TE is
dominant in the HE mode.

Figure 4 shows the dispersion curves of the axisym-
metric hybrid EH01 mode with a beam energy of 80 keV,
current of 200 A, beam thickness of Δp = 0.1 cm, and
B0 = 0.4 T. Four beam modes exist on the axially stream-
ing beam. They are fast and slow space charge modes,

Fig. 4 Dispersion curves of axisymmetric mode (m = 0) with
beam energy 80 keV, current 200 A, Rbb = 1.35 cm, Rba =

1.25 cm and B0 = 0.4 T.

Fig. 5 Temporal growth rate of Cherenkov and slow cyclotron
instabilities versus rotational direction of electromagnetic
wave propagation.

fast and slow cyclotron modes. The slow space charge and
slow cyclotron modes couple to the EH01 mode, resulting
in the Cherenkov and slow cyclotron instabilities.

The growth rates of the slow cyclotron instability are
plotted in Fig. 5 for m = −1, 0, and 1. The nonaxisymmet-
ric instabilities are almost the same as the axisymmet-
ric instability. Since the perturbation is assumed to be
exp[i(kzz+mθ−ωt)], electromagnetic waves propagate he-
lically. The direction of rotation is rightward (leftward) in
the laboratory frame of reference with positive (negative)
m. For an oversized BWO, the growth rates are not affected
by the rotational direction.
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Fig. 6 Dependence of the temporal growth rate on beam thick-
ness.

Figure 6 shows the dependence of the temporal growth
rate on beam thickness Δp for the EH01 mode. The beam’s
outer radius is fixed at 1.35 cm, and the beam’s inner radius
has been changed with a fixed line density λ0 and hence a
fixed beam current. Here, we must distinguish λ0 from the
volume density n0. In the case of a uniformly distributed
beam, λ0 is the product of the area of the beam’s cross sec-
tion and n0. When Δp decreases, n0 increases; this keeps
λ0 constant. The growth rate of the Cherenkov instability
increases with a fixed beam current in the case of low Δp

and large n0. The growth rate of the slow cyclotron insta-
bility also increases with decreasing Δp and increasing n0.
However, in the region of Δp < 0.022 cm, the growth rate
decreases.

In the limit that the beam’s inner radius is zero, the
growth rate of the Cherenkov and slow cyclotron instabil-
ities of a thin-walled annular beam approaches the growth
rate of a solid beam, denoted by � in Fig. 6. In the other
limit that Δp → 0, the corresponding growth rates are those
of an infinitesimally thin annular beam model and are de-
noted by (• in Fig. 6. Two models based on finite and zero
Δp give almost the same results for the Cherenkov instabil-
ity. For the slow cyclotron instability, the growth rates of
the two models differ. This might be caused by the differ-
ence in the annulus: one has an internal structure between
the inner and outer surfaces, and the other is just a sheet
without any internal structure.

For the EH01 mode, the dependence of the tempo-
ral growth rate of the Cherenkov instability on the guid-
ing magnetic field is shown in Fig. 7 and that of the slow
cyclotron instability in Fig. 8. The growth rate of the
Cherenkov instability hardly changes with variation in the
magnetic field. However, in the region of B0 < 0.18 T,
the growth rate increases. In this region, the slow cy-
clotron instability merges into the Cherenkov instability.
The dip in the growth rate in the vicinity of 1.8 T is at-
tributed to resonant interaction of the space charge and fast
cyclotron modes. Electromagnetic wave excitation by the
space charge mode is suppressed by the fast cyclotron in-

Fig. 7 Dependence of Cherenkov instability on B0. Beam pa-
rameters are the same in Fig. 4.

Fig. 8 Dependence of slow cyclotron instability on B0. Beam
parameters are the same in Fig. 4.

teraction. Such combined interaction is characteristic of a
periodic SWS.

The growth rate of the slow cyclotron instability de-
pend strongly on the magnetic field: it decreases with in-
creasing magnetic field. The slow and fast cyclotron modes
shift to the right and to the left, respectively, in Fig. 4. In
the vicinity of 0.9 T and 1.8 T, the slow and fast cyclotron
modes interact with each other, and the growth rate be-
comes discontinuous. At 1.5 T, the slow cyclotron mode
begins to cross the EH01 mode at the 2π point with a very
small growth rate at point 1 in Fig. 9. Other interaction
points 2 and 3 appear in the forward region, as shown in
Fig. 9. Note that the three points 1, 2, and 3 are on the
same slow cyclotron mode. The dispersion curves of a
periodic SWS are periodic in wave number space, and a
one-period drawing has all the information we need. Fig-
ure 9 has a period of 18.5 cm−1. The forward region from
18.5 cm−1 (kzz0 = 2π) to 27.7 cm−1 (kzz0 = 3π/2) can be
seen in the forward region from 0 (kzz0 = 0) to 9.2 cm−1

(kzz0 = π/2). With increasing magnetic field after pass-
ing 1.5 T, the slow cyclotron mode moves to the right, and
points 1 and 2 merge and disappear. The slow cyclotron
mode becomes coupled to the EH01 mode only at point 3,
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Fig. 9 Dispersion curve of EH01 mode. Three beam lines of the
space charge, fast cyclotron, and slow cyclotron modes
are plotted for B0 = 1.5 T.

leading to a discontinuity in the growth rate near 1.5 T. In
summary, the slow cyclotron mode couples to the EH01

mode in the backward regions of −1.5 T and 1.8-2.0 T. At
1.5-1.8 T, the slow instability occurs in the forward region.

4. Conclusion
We develop a numerical code for a sinusoidally cor-

rugated waveguide with a finitely thick annular beam con-
sidering three-dimensional beam perturbations. The self-
consistent field analysis is improved for an oversized SWS,
and the slow cyclotron and Cherenkov instabilities are nu-

merically examined. Nonaxisymmetric instabilities are
excited even in a completely axisymmetric system. The
growth rates are almost the same in nonaxisymmetric
instabilities with m = ± 1 and axisymmetric instabilities.
The slow cyclotron and Cherenkov instabilities depend on
the annular thickness. The Cherenkov instability has a
weak dependence on the guiding magnetic field, while the
slow cyclotron instability depends strongly on the mag-
netic field. Our numerical code can analyze the depen-
dence of slow-wave instabilities and will play an important
role in numerical analyses of weakly relativistic oversized
BWO and slow cyclotron maser experiments.
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