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Practical Calculation of Nuclear Fusion Power for a Toroidal
Plasma Device with Magnetic Confinement
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An algorithm has been developed and realized as a FORTRAN code to calculate the volume integral power
of a magnetic confinement nuclear fusion reactor and the local fusion rate function. It takes the nuclei energy dis-
tributions, fusion cross-sections, and magnetic surface geometry as input data. Two fast, simple analytic models
of magnetic flux surfaces were used, and the corresponding Jacobian determinants were found. Gaussian ker-
nel empirical probability density estimation has been proposed to reconstruct the ion energy probability density
function from experimentally obtained random samples of escaping neutral atom energies. The influence of ion
heating and fast ion confinement on high-energy distribution tails, and thus on the neutron yield and fusion power,
can be calculated. The code has been applied to obtain radial profiles of the nuclear fusion reaction rate and vol-
ume integral power for both Maxwellian and suprathermal D and T particle distributions. A fast neutral particle
diagnostic database may serve as a basis for an experimentally confirmed calculation technique for reactor power
and ignition criterion.
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1. Introduction
The power of a magnetic confinement fusion reactor P

[W] and the fulfillment of the ignition criterion are quan-
titatively determined by the nuclear fusion reaction rate
Rαβ [m−3s−1] integrated over the plasma volume using the
known magnetic surface geometry:

P ∝
∫
Rαβ(r)d3r

=

∫
Rαβ(ρ, ϑ, φ)R(ρ, ϑ, φ) |J| dρdϑdφ . (1)

where
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is the Jacobian determinant for the transformation
from cylindrical coordinates (R, Z, ϕ) to flux coordinates
(ρ, ϑ, ϕ); ρ, ϑ and ϕ are the magnetic surface label, poloidal
angle, and toroidal angle, respectively. Azimuthally sym-
metric magnetic surfaces are assumed in (2).

The rate of the nuclear fusion reaction between
species α and β,

Rαβ = nαnβ
1 + δαβ

R̃αβ . (3)
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in turn, is proportional to the rate coefficient R̃αβ = 〈σ(v)v〉
averaged over the velocity distribution functions of the re-
acting species by integrating over the six-dimensional ve-
locity space

R̃αβ =
∫
σ(v)v fα(uα) fβ(uβ)d3uαd3uβ . (4)

where v =
∣∣∣uα − uβ∣∣∣ is the relative velocity, and δαβ is the

Kronecker symbol, reflecting the fact that when the react-
ing species are identical, as in DD and TT reactions, and
their density is n, the rate is proportional to the number of
combinations C2

n = n(n − 1)/2 ≈ n2/2
The FORTRAN code for nuclear fusion rate and

power calculation is based on (1)-(4), and nuclear cross-
section approximations have been obtained from refer-
ences [1–3]. Particle density profiles and the magnetic sur-
face geometry are used as input data. The main new fea-
ture of the code is that not only analytic fast ion distribu-
tion functions based on theoretical models, but also exper-
imentally obtained distributions may be used for the cal-
culations. Suprathermal high-energy particles contribute
greatly to the reaction rate. The influence of ion heating
and fast ion confinement on high-energy distribution tails,
and thus on neutron yield and fusion power, can be calcu-
lated on the basis of experimental data.

c© 2010 The Japan Society of Plasma
Science and Nuclear Fusion Research
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2. Analytic Models of Magnetic Sur-
faces
A rigorous treatment requires the use of Grad-

Shafranov equation solutions. To increase the computa-
tion speed and simplify the code, two analytic models of
magnetic surfaces have been used, in the form of nested
shifted D-shaped curves and nested shifted ellipses in the
poloidal cross-section. The D-shaped last closed flux sur-
face (LCFS) equation in cylindrical coordinates is

Z±LCFS(R) = ±√
(κ1 + κ2R)

×
√√
κ3R2 + κ4R + κ5 + κ6R + κ7 . (5)

where κ1 = Rout/2γ , κ2 = −1/2γ , κ3 = 1 − 4γ, κ4 =
−2 (κ3Rout + δ (2γ − 1)), κ5 = κ3R2

out+2δ×(2γ − 1) Rout+δ
2,

κ6 = 1, and κ7 = δ − Rout are determined by three input
parameters: outer plasma radius Rout [m], LCFS poloidal
cross-section width δ [m], and dimensionless γ to control
the LCFS poloidal cross-section width to height ratio. One
more dimensional input parameter Δ [m] is used to simu-
late the Shafranov shift. The magnetic axis position is then

R0 =
Rin + Rout

2
+ Δ . (6)

where the inner plasma radius Rin [m] is calculated from
the LCFS equation (5). The poloidal angle ϑ ∈ [0, 2π)
is defined in the same way as the polar angle, assuming
R = R0, Z = 0 is the center point and R is the polar axis.

In the transformation between cylindrical coordi-
nates (R, Z, φ) and flux coordinates (ρ, ϑ, φ), the azimuthal
(toroidal) angle φ ∈ [0, 2π) is preserved. For a given point
(ρ, ϑ) in the poloidal plane, the transformation of coordi-
nates to cylindrical (R, Z) is performed as follows. First,

ϑ̃ = π − (π − ϑ) sign (π − ϑ) . (7)

is calculated, where sign(y) = −1 for y < 0 and sign(y) = 1
for y ≥ 0. If ϑ̃ = 0, then Z = 0; R = R0 + ρ (Rout − R0).
If ϑ̃ = π, then Z = 0; R = R0 + ρ (Rin − R0). If ϑ̃ = π/2,
then R = R0; Z = ρZ+LCFS (R0) sign (π − ϑ). Otherwise, the
nonlinear equation

Z+LCFS (RLCFS)
RLCFS − R0

− tan ϑ̃ = 0 . (8)

is resolved numerically with respect to RLCFS, sought
within [Rin,Rout]. Then,

R = R0 + ρ (RLCFS − R0) ,

Z = ρZ+LCFS (RLCFS) sign (π − ϑ) . (9)

The ellipse-shaped LCFS equation in cylindrical co-
ordinates is

Z±LCFS (R) = ±
√
κ1R2 + κ2R + κ3 . (10)

where κ1 = −b2/a2, κ2 = 2b2 (Rout − a)/a2, and κ3 =
b2 − b2 (Rout − a)2/a2 are determined by three dimensional

input parameters: outer plasma radius Rout [m] and major
and minor ellipse semiaxes a [m] and b [m]. Again, an
additional dimensional input parameter Δ [m] is used to
simulate the Shafranov shift. The magnetic axis position is
then

R0 = Rout − a + Δ . (11)

The coordinate transformation from (ρ, ϑ) to (R, Z) is per-
formed using formulas (8) and (9) as for D-shaped curves,
substituting the proper function Z+LCFS (R) given by (10) for
(5).

Fig. 1 shows ρ = const isolines obtained by using the
coordinate transformation procedures for the two model
magnetic surface shapes. The parameters are δ = 1.5 m,
γ = 0.326426 for Fig. 1 a); a = 0.75 m, b = 1.5 m for
Fig. 1 b); and Rin = 1.5 m, Rout = 3 m, Δ = 0.1 m for both.

Since R and Z are implicit functions of ρ and ϑ, cen-
tral difference derivative formulas are used to calculate the
elements of Jacobian determinant (2). Left and right dif-
ference derivatives are used at the extremities of the range
ρ ∈ [0, 1], ϑ ∈ [0, 2π). The resulting |J| shown in Fig. 2
enables calculation of volume integral (1) for either of the
two magnetic surface types.

Either these fast simple analytic models, or ones simi-
lar to [4,5], may be used as a satisfactory practical approx-

Fig. 1 a) D-shaped and b) ellipse-shaped isolines ρ = const for
Rin = 1.5 m, Rout = 3 m, Δ = 0.1 m.

Fig. 2 Jacobian determinant for a) D-shaped and b) ellipse-
shaped magnetic surface models.

S1028-2



Plasma and Fusion Research: Regular Articles Volume 5, S1028 (2010)

imation of a tokamak’s magnetohydrodynamic (MHD)
equilibrium whenever chord or volume integration or map-
ping of plasma parameters as functions of magnetic sur-
faces to real space coordinates is required in physical and
engineering tasks. For stellarator/heliotron configurations,
more complicated full-3D models are needed.

The correctness of Jacobian determinant (2) and the
performance of volume integration subroutine (1) can be
tested easily by substituting constant unity instead of the
reaction rate Rαβ. The numerical integration result should
then be equal to the volume VLCFS enclosed by LCFS,
which is readily obtained as

VLCFS = 4π

Rout∫
Rin

RZ+LCFS(R)dR . (12)

in general, and as VLCFS = π
2(Rin+Rout)ab in particular for

the ellipse-shaped cross-section case.

3. Nuclear Fusion Rate Coefficients
3.1 Monoenergetic beam and Maxwellian

target
For the monoenergetic and monodirectional distribu-

tion fα(uα) = δ (uα − V) of species α interacting with a
Maxwellian target β,

fβ(uβ) = f (M) =

( mβ
2πT

)3/2
e−

mβv2β
2T . (13)

rate coefficient (4) is reduced to

R̃(BM)
αβ

(
V,mβ/T

)
=

1
V

(
2mβ
πT

)1/2

e−
mβV2

2T

×
+∞∫
0

v2σ(v) sinh
(

mβvV
T

)
e−

mβv2
2T dv . (14)

Denoting the atomic velocity unit as v0 ≈ 2.188× 108 cm/s
and introducing a dimensionless variable y = v2/v20 and

dimensionless constants A =
mβv20
2T

and B = V/v0, consider
a dimensionless function

F (y) =
√

y
(
e2AB

√
y−Ay−AB2 − e−2AB

√
y−Ay−AB2)

. (15)

Then,

R̃(BM)
αβ

(
V,mβ/T

)
=
v0

2
√
π

√
A

B

∫ +∞

0
σ(y)F (y)dy. (16)

To avoid arithmetic overflows, the constant e−AB2
should

not be taken outside the integral. F (y) is a nonnegative,
slightly asymmetrical bell-shaped exponentially decaying
function as shown in Fig. 3. The maximum position de-
pends on the parameters. Qualitatively, function F (y) can
be thought of very roughly as a Gaussian curve corre-
sponding to the Maxwellian distribution of target particles,

Fig. 3 Function F (y) in the integrand of the beam-Maxwellian
rate coefficient (16).

shifted along the abscissa axis by a value corresponding to
the beam particle velocity. The exact maximum condition
is expressed by the nonlinear equation

tanh z =
2AB2z

z2 − 2AB2 . (17)

where z = 2AB
√

y. Equation (17) can be solved numeri-
cally by taking the positive root of the quadratic equation
corresponding to the unit right-hand side as an initial ap-
proximation.

Assuming the cross-section σ(y) is a smoother func-
tion than F (y), the integral in (16) can first be evaluated
over a finite interval around the maximum of F (y). Then,
at every subsequent step, one should broaden the initially
chosen arbitrary integration limits until the integral value
becomes close enough to that obtained at the previous step.
Thus, the required relative precision may be achieved.

3.2 Isotropically distributed projectiles and
Maxwellian target

If the velocity distribution of species α is expressed by
an isotropic function F(vα), and the distribution of species
β is Maxwellian as in (13), the rate coefficient is calculated
as

R̃(F M)
αβ = 4π

∫ +∞

0
v2αF(vα)R̃(BM)

αβ

(
vα,mβ/T

)
dvα. (18)

The technique to compute R̃(BM)
αβ

(
vα,mβ

/
T
)

is de-
scribed above. The practical realization of formula (18)
depends on the specific function F(vα). In particular,
for suprathermal ion distributions arising from fast neu-
tral beam injection heating, the upper integration limit, in
practice, appears to be finite. Another characteristic case
of a bell-shaped exponentially decaying integrand implies
that one should step-by-step broaden the integration range
around the maximum position, comparing the integral val-
ues, until the required relative precision is achieved.

3.3 Isothermal Maxwellian case
This is an important particular case of subsection 3.2.

For two Maxwellian species α and β at thermal equilibrium
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Tα = Tβ = T , the rate coefficient is

R̃(MM)
αβ

(
μαβ/T

)
=

2√
π
v0γ

3/2
∫ +∞

0
σ(y) f (y)dy. (19)

where the dimensionless function f (y) = ye−γy, the dimen-
sionless variable y = v2/v20, and the dimensionless con-

stant γ =
μαβv

2
0

2T
. The value v0 denotes the atomic velocity

unit, as above, and μαβ = mαmβ/(mα + mβ) is the reduced
mass. The maximum of f (y) is attained at y = 1/γ. As-
suming the cross-section σ(y) is a smoother function than
f (y), the integral in (19) can first be evaluated over a fi-
nite interval around the maximum of f (y). Then, at every
subsequent step, one should broaden the initially chosen
arbitrary integration limits until the integral value becomes
close enough to that obtained at the previous step. Thus,
the required relative precision may be achieved.

Maxwellian fusion rate coefficients (19) are well
known. Practical approximations for a number of reac-
tions are given in [3] as functions of temperature. These
approximations have been used for benchmarking to test
the validity of general (i.e. not only for Maxwellian pro-
jectiles) subroutine (18). If a Maxwellian distribution is
substituted in all-purpose formula (18) as a particular case
of an isotropic function F(vα), the result should agree with
known Maxwellian rate coefficients taken from [3]. Such
testing was done successfully and the correctness of the
subroutine performing integration (18) has been verified.

4. Fast Neutral Beam Injection-Indu-
ced Suprathermal Ion Distribution
To describe the neutral beam injection heating-

induced fast ion distribution, one can use the classical non-
stationary slowing-down distribution function F(sl) (vα) for
a delta-like fast ion source

S
(
vα − vin j

)
=

S 0

4πv2α

e−
(vα−vin j)2

ε2

ε
√
π

. (20)

expressed as

F(sl) (vα) =
K

v3α + v
3
c

(
er f

(
v∗ (vα, t) − vin j

ε

)

−er f
( vα − vin j

ε

))
. (21)

where K is a normalization constant. The slowing-down
time

τs =
3mαT

3/2
e

4
√

2πneZ2
αe4Λm1/2

e

. (22)

and the cube of the critical velocity

v3c =
3
√

2πT 3/2
e

2mαm
1/2
e

. (23)

Λ is the Coulomb logarithm, and, as shown in [6],

v∗ (vα, t) =
((
v3α + v

3
c

)
e3t/τs − v3c

)1/3
. (24)

Fig. 4 Deuteron (solid curves) and triton (dashed curve) kinetic
energy probability density functions and corresponding
T(D,n)He4 fusion reaction rate coefficients.

The normalization constant K is determined by numeri-
cal integration. The ion velocity vα =

√
2E/mα, vin j is

the injection velocity corresponding to the injection energy
E(in j), the values S 0 and ε in (19) determine the source rate
and peak width, respectively, and t is the time since the fast
particle source action began.

Fig. 4 shows three examples of rate coefficients cal-
culated using (18) for the interaction with isothermal
Maxwellian tritium plasma; TT = Te = 10 keV, ne =

2.0×1014 cm−3, and suprathermal deuterons are distributed
according to (21) with injection energies E(in j)

D = 50 keV,
E(in j)

D = 75 keV, and E(in j)
D = 100 keV. Unity-normalized

triton (dashed curve) and deuteron (solid curves) energy
probability density functions as well as the corresponding
rate coefficient values for these three cases are shown.

5. Treatment of Experimentally Ob-
tained Suprathermal Ion Distribu-
tions
Radial and angle dependence of the ion distribution

function is studied experimentally by means of passive
line-integral and active localized charge exchange neu-
tral particle diagnostics [7, 8]. An extensive diagnostic
database of this kind should enable one to predict local
ion distribution function evolution for a given plasma dis-
charge regime in a certain device for a specific heating
method and time diagram.

Using diagnostic data in the form of an array of en-
ergies (E1, . . . , EN) of escaped neutral particles measured
along a certain observation direction, where N is the total
number of particles collected during a certain time interval,
one can construct an empirical probability density function

f (e) (E)=
1

Nh

N∑
j=1

K
(

E − E j

h

)
, h > 0 . (25)

with Gaussian kernel function K(z) = e−z2/2/
√

2π. Ion
distribution function reconstruction and the algorithm for
selecting an optimal kernel bandwidth h are discussed in
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[9].
Thus, it is possible to perform a correct experimen-

tally confirmed calculation of the time evolution of local
fusion rate coefficient (4) and fusion reactor power (1).
Specific MHD equilibrium data can then be used rather
than analytic approximations.

Calculation of fusion rate coefficients using empirical
probability density functions (25) is illustrated in Fig. 5.
Rate coefficients have been calculated for the interaction
between purely Maxwellian tritons at TT = 10 keV and
95 % Maxwellian deuterons with 5 % suprathermal tail dis-
tortion; i.e. the deuteron velocity probability density is

f (0)
D (v) = 0.95 f (M)(v) + 0.05F(sl)(v) . (26)

where superscript (0) denotes the absence of energetic par-
ticle losses. Furthermore, a model loss factor has been in-
troduced in the form

f (α)
D (v) = f (0)

D (v)
(
1 − αe−μ(v−λvin j)2

)
. (27)

A sample of N = 5 × 104 uniformly distributed pseu-
dorandom numbers has been generated using the Mersenne
twister algorithm [10] and then recalculated to energy val-
ues (E1, . . . , EN) by applying the inverse cumulative dis-
tribution function for the kinetic energy corresponding to
velocity distribution (27) with μ = 0.845 × 10−16 s2/cm2,
λ = 0.845, and three different values of the fast ion loss
parameter: α = 0 (no losses), α = 0.4, and α = 0.6.
The obtained numbers simulate random samples of deu-
terium particle energies measured during 1 s at N counts
per second. Their 80-channel histograms are shown in
Fig. 5. Such a reduction in the high-energy distribution
tail may occur in practice due to fast particle confinement
effects. Experimental observations of this kind were de-
scribed in [11].

To evaluate the fusion reaction rate and also the effect
of the difference in high-energy deuteron distribution tails
on the fusion reaction rate, empirical probability densities

Fig. 5 Empirical probability density functions (curves) and his-
tograms (points) for numerically simulated samples of
pseudorandom deuteron energies corresponding to three
loss parameter values: α = 0 (squares), α = 0.4 (solid
circles) and α = 0.6 (triangles).

(25) have been calculated for the three random energy sam-
ples. They are shown by solid curves in Fig. 5. The corre-
sponding T(D,n)He4 fusion reaction rate coefficients <σv>
were calculated for each of the three cases by substituting
the obtained empirical probability densities (25) into sub-
routine (18).

6. Power Calculation Examples
Assuming the radial density profiles to be

ne,D,T(ρ)=
(
ne,D,T(0) − ne,D,T(1)

)
(1−ρa)b+ne,D,T(1).

(28)

and radial temperature profiles to be

Te,D,T(ρ)=
(
Te,D,T(0) − Te,D,T(1)

)
(1−ρq)r

+Te,D,T(1).

(29)

let us introduce an additive non-Maxwellian distortion in
the form of (21) to the deuterium distribution so that

fD(uD) = A
( mD

2πT

)3/2
e−

mDv2D
2T + (1 − A)F(vD) . (30)

where A ≤ 1. A = 1 corresponds to the pure undistorted
Maxwellian case. The rate coefficient for the interaction of
deuterium particles distributed according to (30),

R̃DD = A2R̃(MM)
DD (μDD/T ) + 2A(1 − A)R̃(F M)

DD

+ (1 − A)2R̃(FF)
DD . (31)

is then calculated using (18) and (19). The last term in (31)
accounts for the tail-tail particle interaction rate. It is con-
sidered negligible because the non-Maxwellian distortion
is assumed to be small; i.e., (1 − A)2  1.

When a deuterium component distributed according to
(30) interacts with Maxwellian tritons,

fT(uT) =
( mT

2πT

)3/2
e−

mTv2T
2T . (32)

the rate coefficient is

R̃DT = AR̃(MM)
DT (μDT/T ) + (1 − A)R̃(F M)

DT . (33)

The fusion rate radial profile and integral power calcu-
lations given below are for the T(D,n)He4 reaction. Fig. 6
shows the electron and ion temperature profile Te = TD =

TT with q = 1.5, r = 2, Te,D,T(0) = 10 keV, and Te,D,T(1) =
50 eV, and the electron density profile with a = 4, b = 2,
ne(0) = 1.0 × 1014 cm−3, and ne(1) = 0.7 × 1014 cm−3. The
nuclei densities are assumed to be nD = nT = ne/2.

Calculations have been performed for three variants of
the deuteron velocity distribution function shown in Fig. 7,
namely, for an undistorted Maxwellian distribution and
for a 2.5 % or 5 % population of suprathermal particles
described by the classical slowing-down model of beam
particles with injection energy Ein j = 150 keV. The non-
locality, i.e., the radial dependence of the ion distribution
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Fig. 6 Radial profiles of electron, deuteron, and triton tempera-
tures and electron density.

Fig. 7 Deuteron energy distribution function a) in undistorted
Maxwellian case for A = 1, and in presence of suprather-
mal tail with b) A = 0.975 and c) A = 0.950.

function, in this model is due to the radial profiles of ne

and Te, which determine the slowing-down time and the
critical velocity values.

For each of the three variants of the distribution, the

Fig. 8 Radial profiles of T(D,n)He4 reaction rate for thermal tri-
tons and three variants of deuteron energy distribution,
and corresponding plasma volume integral power values
for two types of magnetic surface geometry.

Table I Benchmarking against experiments.

radial profile of the T(D,n)He4 reaction rate has been cal-
culated, as well as the plasma volume integral power for
two types of magnetic surfaces with D-shaped and ellipti-
cal poloidal cross-sections as shown in Fig. 1. Slight dif-
ferences in the magnetic surface shape, as expected, have
no significant direct “geometrical” influence on the power.
Calculation results are shown in Fig. 8. In this example, the
presence of a 5 % suprathermal deuteron population con-
tributes significantly to the reaction rate and leads to an in-
crease of approximately 2.6 times in the fusion power com-
pared to the pure Maxwellian case. In similar conditions
with a twice-lower central temperature Te,D,T(0) = 5 keV,
the presence of 5 % suprathermal deuterons would lead to
an increase of more than 20 times in the fusion power and
neutron yield. At a higher central temperature, Te,D,T(0) =
20 keV, this factor is about 1.3, since the Maxwellian rate
prevails in this case.

For benchmarking purposes, our simulation results are
compared with experiments on the JET (Joint European
Torus) and TFTR (Tokamak Fusion Test Reactor) toka-
maks [12, 13] and with design estimates for JT-60SA [14]
and ITER [15] in Tables I and II, respectively. Benchmark-
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Table II Comparison with design estimates.

ing against experiments shows that our simulation, with
about 50 % accuracy, is more optimistic than the experi-
mental results. However, our simulation results are below
the design expectations, as seen in Table II.

7. Summary
A general practical algorithm has been realized to

calculate the nuclear fusion rate and power in a toroidal
magnetic plasma confinement device. Volume integration
is performed using analytical approximations of magnetic
surfaces. A detailed description of a velocity space integra-
tion technique for beam-Maxwellian, bi-Maxwellian, and
isotropic function-Maxwellian cases has been given. Fu-
sion rate and power calculations can be done using either
theoretical or experimentally obtained nuclei energy distri-
bution functions.

A significant contribution to the nuclear fusion reac-
tion rates comes from suprathermal ions from high-energy
distribution tails. Therefore, the production and good con-
finement of fast ions play an essential role. Reliable experi-
mental data and theoretical understanding of the formation
of fast ion distribution tails are required.

The ion distribution function reflects kinetic effects,
single-particle confinement properties depending on the
particular magnetic configuration, finite β effects such as
MHD-induced fast ion losses, radial electric field effects,
and other influences. As a method of investigating the
ion component distribution function and its evolution upon
application of heating, measurements of kinetic energy
distributions of neutral atoms escaping from the plasma
may be used; often referred to as neutral particle analy-

sis (NPA) diagnostics. Multidirectional passive measure-
ments provide information on the angular anisotropy, fast
ion confinement, and distribution tail shapes. Line-integral
energy-resolved neutral fluxes are obtained at different ob-
servation angles. Special mathematical techniques are re-
quired for correct data analysis [7]. Another approach
is to create a localized dense target for charge exchange
in the plasma. A diagnostic pellet ablation cloud can be
used for this purpose (pellet charge exchange, or PCX).
Time-resolved measurements of the neutral flux from the
cloud as it moves across the plasma column yield radially-
resolved information on the fast particle energy distribu-
tion [8].

Smooth normalized probability density functions for
the nuclei energies can then be calculated from NPA data
using the method given in [9]. Thus, experimentally con-
firmed calculations of nuclear fusion rate and power are
possible on the basis of diagnostic data.

This work was performed as a collaboration between
Plasma Physics Department of St. Peterburg Polytechnic
University and NIFS.
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