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Numerical Simulation on the Flute Instabilities in the GAMMA10
Magnetic Field
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We apply the computer simulation code, which was developed to study the flute mode fluctuations in the
axisymmetric divertor, to the GAMMA10 tandem mirror in order to calculate the effects of the anisotropic elec-
trostatic potential in the central cell. This initial anisotropic potential can be created by ECRH when it is turned
on. It was found that the initial anisotropic potential profile caused the large energy radial transport by inducing
flute-mode like fluctuations, which is not inconsistent with the GAMMA10 experimental results.
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1. Introduction
Flute modes are the most dangerous instabilities

in open magnetic systems such as GAMMA10 tandem
mirror. So that the GAMMA10 contains the non-
axisymmetric minimum-B mirror regions for the suppres-
sion of the flute instabilities. The non-axisymmetric mag-
netic field, however, causes the neoclassical radial trans-
port of ions in the central cell, so that the fully axisymmet-
ric tandem mirror is desirable. A divertor magnetic mirror
is a candidate for the axisymmetric tandem mirror stable
to the flute modes as a future device [1]. There is a plan to
replace one of anchor cell in GAMMA10 with an axisym-
metric divertor mirror cell [2].

We have derived a set of the basic equations to analyze
the flute mode fluctuations in the axisymmetric magnetic
divertor and have developed a computer simulation code
[3, 4]. In the present paper, we will apply the computer
code to the GAMMA10 magnetic field and will perform
the computer simulation on the flute mode fluctuations and
the associated plasma radial transport.

In order to apply the computer code, where the basic
equations used in the code were derived on the assumption
of the axisymmetric systems, to the GAMMA10 with the
non-axisymmetric mirror regions, we make the following
assumption. The stability criterion of the flute modes in a
mirror is given as [5, 6]

∫ L

−L

( p̃⊥ + p̃‖)
B

κψdζ ≥ 0. (1)

Here the anisotropic pressures are written by the separation
of variables as p⊥(ψ, ζ) = p̃⊥(ζ)ν(ψ), p‖(ψ, ζ) = p̃‖(ζ)ν(ψ)
and κψ is the normal curvature described in the flux coor-

author’s e-mail: katanuma@prc.tsukuba.ac.jp

Fig. 1 GAMMA10 axial pressure model. Here p = p̃⊥ + p̃‖.

dinates (ψ, ϕ, ζ) with B = ∇ψ × ∇ϕ,

ê‖ · ∇ê‖ ≡ κ = κψ∇ψ + κϕ∇ϕ. (2)

The familiar stability criterion of the flute modes with
isotropic plasma pressure is [7]

δ

∫ L

−L

dζ
B
< 0 ⇒ ∂U

∂ψ
< 0 , U ≡

∫ L

−L

dζ
B
. (3)

Noticing that ∂U/∂ψ = −2
∫
κψdζ/B in the vacuum mag-

netic field, where ∇⊥B = Bκ, we redefine the specific vol-
ume of a magnetic field line U as

U =
∫ L

−L

( p̃⊥ + p̃‖)
B

dζ. (4)

This definition of specific volume U in Eq. (4) satisfies
the stability criterion Eq. (1) with the axial pressure profile
such as in Fig. 1. So the simulation code can be applied
to the non-axisymmetric magnetic field with anisotropic
plasma pressure if the specific volume U defined in Eq. (4)
is axisymmetric.

2. Application to the GAMMA10 Tan-
dem Mirror
GAMMA10 is an effectively axisymmetrized tan-

dem mirror, which is designed to satisfy that the integral∫
κψdζ/B does not depend on the azimuthal coordinate ϕ.
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The definition of U in Eq. (4) retains the axisymmetric
character of U , and the computer code [3, 4] can be used
to calculate the flute mode fluctuations in GAMMA10.
The axial plasma pressure profile adopted here is shown
in Fig. 1.

Figure 2 plots the radial profiles of the specific volume
U for the various ratio pc ≡ ( p̃⊥+ p̃‖)Anchor/( p̃⊥+ p̃‖)central.
In light of stability criterion Eq. (1) or Eq. (3), the cases of
Figs. 2 (b) and 2 (c) are stable to the flute modes near axis.

The basic equations adopted in the code are that the
equation of motion of vorticity ŵ,

∂t|ψŵ+[[Φ, ŵ]]−[[ρ̂, 〈v
2
α

2
〉]]+ 1

Uγ

∂U
∂ψ

∂(ρ̂0T̃ + T̂0ρ̃)
∂ϕ

= {DT }w
(5)

where ŵ is related to the specific volume integrated vortic-
ity ∇ × (ρ̂B × ∇Φ/B2) due to plasma E × B drift flux, i.e.
ŵ = wU . The transport equation of density ρ̂ integrated
along a magnetic field line, i.e. ρ̂ = ρU, is

∂t|ψρ̂ + [[Φ, ρ̂]] = {DT }ρ. (6)

And the transport equation of heat T̂ integrated along a
magnetic field line, i.e. T̂ = TUγ−1, is

∂t|ψT̂ + [[Φ, T̂ ]] = {DT }T . (7)

Here the terms {DT }w, ρ,T are the classical dissipative terms
[3, 4, 8], and [[Φ, ŵ]] ≡ (∂Φ/∂ψ)∂ŵ/∂ϕ − (∂Φ/∂ϕ)∂ŵ/∂ψ
is known as the Poisson bracket. The quantities with sub-
script 0 means the equilibrium ones and γ is the adiabatic
index γ = 5/3. The symbol 〈v2

α〉 is the square of plasma
flow velocity, and the vorticity ŵ can be represented by the
scalar potential Φ as

ŵ = ∂ψ(ρ̂〈r2〉∂ψΦ) + ∂ϕ
(
ρ̂〈1/r2B2 + λ2B2〉∂ϕΦ

)
(8)

where 〈A〉 means the average of A along a magnetic field
line.

The linear dispersion relation obtained from Eqs. (5)-
(8) is

(ω − m∂ψΦ0)2m2ρ̂0〈1/r2B2 + λ2B2〉
+ (ω − m∂ψΦ0)

⎧⎩m(∂ψρ̂0)∂ψ(〈r2〉∂ψΦ0) − m∂ψŵ0
⎫⎭

−
⎧⎪⎩(m2/2)(∂ψ〈v2

α〉)∂ψρ̂0 + (m2/Uγ)(∂ψU)∂ψ(ρ̂0T̂0)
⎫⎪⎭ = 0.

(9)

Here m is the azimuthal mode number and ω is the fre-
quency of the mode. In the case of ∂ψŵ0 = 0 and ∂ψρ̂0 = 0,

Fig. 2 Radial profiles of u ≡ U(r)/U(0) of GAMMA10.

Eq. (9) gives the simple dispersion relation of

ω = m∂ψΦ0+
⎧⎩(1/Uγ)(∂ψU)(∂ψT̂0)/〈1/r2B2 + λ2B2〉⎫⎭1/2

.

(10)

Equation (10) indicates that the mode drifts azimuthally
with the E×B drift velocity, and is unstable if (∂ψU)∂ψT̂0 <

0 which is just the same as the stability condition of flute
modes of Eqs. (1) or (3).

3. GAMMA10 Experiments
The GAMMA10 tandem mirror improves the axial ion

confinement with the help of plug potential formation in
the end-mirror cells. Figure 3 is a copy of Fig. 6 in the
reference [9] as it was. The authors discussed the effects
of neutral beam injection (NBI) on the line densities mea-
sured in GAMMA10 in their article [9]. But we are in-
terested in the behavior of the diamagnetism (DMcc) in
Fig. 3 (c) around Time � 130ms. The figure indicates that
the diamagnetism dropped suddenly just when the plug
ECRH was turned on. We suppose the mechanism of the
sudden drop of DMcc to be the flute mode fluctuations. We,
therefore, carry out the numerical simulation on the flute
mode fluctuations to make clear this mechanism.

What kind of effects does the plug-ECRH (electron
cyclotron resonance heating for plug potential formation)
bring into the GAMMA10 confinement region? It is
reasonable to understand that the plug-ECRH brings the
charge density perturbation into the system, because the
plug-ECRH is expected to form the plug potential. The po-
tential, however, is created by the vortex within the frame-
work of MHD as shown in Eq. (8), so that the plug-ECRH

Fig. 3 Time evolution of (a) east anchor line density, (b) central
cell line density, and (c) central cell diamagnetism. This
figure and the caption are a copy of Fig.6 in [9].
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is assumed to bring the vortex into the system.

4. Flute Instability
At first we carry out the simulation in the case of

pc = 1.0, where the axial pressure is constant and so the
specific volume U is Fig. 2 (a). Although the study of a
flute instability is not the purpose of this paper, it is useful
to make clear the effects of flute instability on the radial
transport. The flute modes are unstable in this case be-
cause ∂U/∂ψ > 0. The initial condition adopted here is
that ŵ(x, ϕ) = +1, ρ̂(x, ϕ) = 1, T̂ (x, ϕ) = exp{−2x2}u2/3,
where all quantities are normalized, and the radial profile
of temperature T (x, ϕ) is given as T (x, ϕ) = T̂ (x, ϕ)/u2/3.
Here x ≡ r/r0, where r0 = 18 cm is chosen as the radial
position of a limiter in the central cell of GAMMA10. The
constant ŵ gives the rigid azimuthal rotation of plasma by
E × B.

Figures 4 (a) and 4 (d) plot the contour surfaces of the
initial potentialΦ and initial temperature T profiles, where
a small initial perturbation is added to isotropic initial tem-
perature T (x) which is too small to be seen in Fig. 4 (d). It
can be seen that the flute instability makes the temperature
profile flat at t = 70.

Figure 5 shows the time evolution of Fourier com-
ponents of Φ and T at x = 1/2 and Fig. 6 plots the time
evolution of Φ and T at various x but ϕ = 0. Before the
flute instability saturates, a large transport of T occurs in
Fig. 6 (b), when the potential profile deviates from the ax-
isymmetry in Fig. 4 (b). The flute instability saturates when
the temperature profile becomes flat radially like Fig. 4 (f).

Fig. 4 Contour plots of potentialΦ and temperature T at t = 0 in
(a), (d), at t = 20 in (b), (e) and at t = 70 in (c), (f). Here
each Φ(x, ϕ) is normalized by its maximum value at each
time, while each T (x, ϕ) is normalized by its maximum
value at t = 0.

5. Effects of the Anisotropic Potential
Profile
This section is the main purpose of this paper, that is,

the initial anisotropic electrostatic potential is made clear
to enhance a large radial transport.

The flute instability causes a large energy transport
due to the anisotropic potential profile generated by the
instability shown in Fig. 4 (b). If the external µ-wave for
plug potential formation (ECRH) brings the perturbed vor-
ticity in the system, the resultant anisotropic potential can
cause a large transport just like the flute instability. To in-
vestigate this mechanism of transport we carry out the nu-
merical simulation with initial conditions of non-uniform
vorticity ŵ(x, ϕ) in Fig. 7.

The initial condition of ŵ in Fig. 7 is given by

ŵ(x, ϕ) = w0 + wf sin{πx} sin ϕ. (11)

Here w0 and wf are constants which give the initial poten-
tial Φ(x, ϕ) as shown in Fig. 8. The following simulation
adopts pc = 4.0, that is the radial profile of U is given by

Fig. 5 Time evolution of Fourier components of Φ and T for
various azimuthal mode numbers m at x = 1/2.

Fig. 6 The time variation of magnitudes of T (x, ϕ) and Φ(x, ϕ)
is plotted as a function of normalized time t at x = 0,
0.09, 0.18, 0.26, 0.34. All data points are at ϕ = 0.

Fig. 7 Initial condition of ŵ(x, ϕ).
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Fig. 8 Initial condition of potential, which is obtained by
Eqs. (8) and (11) for various wf . Here the case w0 = +0.3
is plotted.

Fig. 2 (b). By changing the coefficients w0 and wf , various
anisotropic initial potential profiles are realized in Fig. 8.

We show the simulation results in the case of wf =

0.1, 0.3, 0.6, 0.9 with w0 = +0.3. Figure 9 plots the
time variation of potential Φ(x, ϕ = 0) and temperature
T (x, ϕ = 0) at x = 0, 0.09, 0.18, 0.26, 0.34, respectively.
It is found that the temperature T at each local spatial point
decreases slowly in time in Figs. 9 (a) and 9 (b), that is the
energy radial transport is not large.

However, a large transport occurs in Figs. 9 (c) and
9 (d), where the initial anisotropic potentials are shown
in Figs. 8 (c) and 8 (d). After normalized time t = 40 in
Fig. 9 (c) and after t = 30 in Fig. 9 (d) the temperature ra-
dial profiles become almost flat. So the initial anisotropy
of potential profile has the strong influence on the trans-
port. The oscillations of potential observed in Figs. 9 come
from the anisotropy of the potential profile, which means
that the initial anisotropy of potential profile survives for a
long time. This can be seen clearly in Fig. 10.

Figure 10 plots the time evolution of Fourier ampli-
tudes of potential at x = 1/2. The dominant mode is
m = 1, amplitude of which is order of magnitude larger
than other modes m � 1. The system is not unstable to the
flute modes, because the m = 1 initial perturbation of Φ
does not grow in time, but the system is in the marginally
stable state.

The initial anisotropy of potential in Fig. 8 (c) re-
sembles the profile in Fig. 4 (b), so that the potential in
Fig. 8 (c) can enhance the radial transport. However, the
time variations of temperature at t ∼ 20 in Figs. 9 (c) and
9 (d) are slower than that in Fig. 6 (b). The m > 1 modes of
φ in Fig. 5 (a) are larger than those in Fig. 10. That is, only
m = 1 mode of φ in Fig. 10 contributes the radial transport
of T , which is the reason that the time variation of T in
Fig. 9 (c) is slower that that in Fig. 6 (b).

The cases of high potential of w0 = +3.0, wf = 3.0

Fig. 9 The time evolution of the potential Φ and T measured at
the same positions as Fig.6 for the case of (a) wf = 0.1,
(b) wf = 0.3, (c) wf = 0.6 and (d) wf = 0.9.

Fig. 10 The time evolution of Fourier amplitudes m = 1 ∼ 5 for
w0 = 0.3.

Fig. 11 The time evolution of the potential Φ and temperature T
measured at the same positions as Fig.11. Here the ratio
wf /w0 is the same as that of Fig.9 (b).

are plotted in Figs. 11. The anisotropy of initial potential
profile is given by the ratio wf /w0 only. The comparison of
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Fig. 12 The time evolution of Fourier amplitudes m = 1 ∼ 5 of φ
measured at x = 1/2.

two cases w0 = +0.3 and w0 = +3.0 indicates that a larger
magnitude of potential causes larger transport as long as
the ratio wf /w0 is the same. These results are supported
by the consideration that the transport results from the E×
B-drifts, that is the larger magnitude E causes the larger
magnitude of drifts.

The time evolution of Fourier amplitude of potential
Φ in the case w0 = +3.0, wf = 3.0 is plotted in Fig. 12.
The m = 1 initial perturbation of Φ is the dominant mode
in this case, and which decreases in time so that the system
is stable to the flute modes.

6. Summary
We applied the simulation code, which developed for

the axisymmetric system, to the non-axisymmetric tandem
mirror, taking into account the effect of axial pressure pro-
file to the magnetic specific volume U. In the case of the
uniform axial pressure profile, the system was unstable to
the flute modes which caused a large energy transport.

If the flute instability enhances the radial transport
during its growing phase, the initial anisotropic potential
also can enhance the radial transport during its dumping
phase. It was found that the initial anisotropy of potential
profile, which was realized by the initial anisotropic vor-
ticity ŵ, caused a large energy transport even in the sys-
tem stable to the flute modes. The mechanism of transport
comes from the E × B-drift in the radial direction due to
the flute-like fluctuations having a long life time (this life
time is the decay time of flute modes). The life time of
this flute-like fluctuations becomes shorter in a very stable
state to the flute modes in Fig. 2 (c) than that in Fig. 2 (b).
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