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Intrinsic Rotation of a Magnetic Island with Finite Width
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The rotation direction of a magnetic island in the saturation regime and the underlying physical mechanism
are numerically investigated based on a four-field model that includes the effects of both ion and electron diamag-
netic drifts as well as parallel ion motion. It is found that diamagnetic effects vanish inside the island, and that
the rotation direction is determined by nonlinearly generated zonal flow. The direction of zonal flow is sensitive
to the viscosity and the finite Larmor radius (FLR) effect. The radial mode structure of zonal flow is found to be
deformed by that of other modes as the viscosity increases. We have also shown that the FLR effect enhances
island rotation toward the ion diamagnetic drift direction through energy transfer to the zonal flow by a nonlinear
ion diamagnetic stress tensor.
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1. Introduction
Tearing modes are resistive magnetohydrodynamic

(MHD) instabilities that break the topology of the ideal
magnetic field and lead to the formation of helically per-
turbed structures called magnetic islands by tearing or re-
connecting magnetic field lines around the resonant sur-
faces in magnetic confinement devices. Linear theory
shows that the classical tearing mode is stable when the
stability parameter
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1
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is negative, which is given by a logarithmic jump of the
perturbed magnetic flux around the rational surface [1].
However, in recent low-collisional plasmas, a new type of
tearing modes, sustained by helically perturbed bootstrap
current, can occur even when classically stable (i.e., the
stability parameter is negative). The metastable (linearly
stable but nonlinearly unstable) tearing modes are called
neoclassical tearing modes (NTMs). NTMs are found to
limit the achievable beta in high-performance discharges
and deteriorate plasma confinement, leading to plasma dis-
ruption. Therefore, much attention has been focused on
NTMs both theoretically and experimentally [2–4].

To understand NTM dynamics theoretically, the mod-
ified Rutherford equation is often used as the model equa-
tion describing temporal evolution of magnetic island
width,
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where τs = μ0r2

s/1.22η is the resistive diffusion time at
the magnetic surface of radius rs, η is the neoclassical re-
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sistivity, Δ′ is the classical tearing stability parameter dis-
cussed above, βp is the poloidal beta at rs, and w0 is the
characteristic island width. The two parameters, Δb and
Δp represent the effects of the bootstrap and polarization
currents, respectively. When the sign of Δp is positive, the
polarization term enhances NTM growth. As a typical rep-
resentation, Δp is written as

Δp =
L2

s

kv2
A

Ω(Ω − ω∗i),

where Ω is the island rotation frequency, ω∗i is the ion dia-
magnetic drift frequency, Ls is the magnetic shear length,

k is the wave number of the mode, and vA =

√
B2

0/4πnmi

is the Alfvén velocity [5, 6]. When the island propagates
toward the electron (ion) diamagnetic drift, the sign of the
polarization term is positive (negative). Therefore, deter-
minating the propagation direction of the island is impor-
tant for evaluating NTM growth. However, the effects of
parallel ion motion and ion diamagnetic drift motion are
neglected in these models. Actually, the ion temperature
in realistic plasmas is of the order of the electron tempera-
ture, so the cold assumption for ions seems to be incorrect.
To evaluate the propagation direction of the island more
correctly, we have to include these effects in the model
equations. For this purpose, we investigate the direction
of island rotation in the saturation regime here. The physi-
cal mechanism of directional change is also discussed. We
found that in some situations, the island can rotate toward
the ion diamagnetic drift direction in the nonlinear regime.
This behavior originates from the disappearance of dia-
magnetic drifts due to pressure flattening inside the island
and the generation of zonal flow in the nonlinear regime.
We have also shown that the viscosity and finite Larmor
radius (FLR) effect are important in determining the island
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direction.
The remainder of this work is organized as follows. In

Sec. 2 we present the model equations used here. Numer-
ical simulation results are presented in Sec. 3. In Sec. 4,
island rotation in the nonlinear regime and the differences
from the linear result are discussed. The mechanism of
changes in the island rotation direction is also investigated.
We have shown that finally, the island rotates in the non-
linearly generated zonal flow. Ion parallel motion is found
to contribute to pressure flattening. Finally, the conclusion
is given in Sec. 5.

2. Model Equations
Since there is no degree of freedom determining island

rotation in conventional MHD models, we have investi-
gated the rotation of an island based on a reduced two-fluid
model that includes the effects of both ion and electron dia-
magnetic drifts. The model equations used here represent
a two-dimensional slab version of the four-field model [7],
which consists of a set of four equations that describe tem-
poral evolution of the magnetic flux ψ, the electrostatic po-
tential φ, the perturbed electron pressure p, and the parallel
ion velocity v‖, i.e.,
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with vorticity U = ∇2⊥φ, and z-directed current den-
sity J = ∇2⊥ψ. The usual Cartesian coordinates (x, y, z)
are adopted. The validity of two-dimensional calcula-
tion is justified in low-beta plasmas, where the mag-
netic field is represented by B = B0 ẑ + ∇ψ × ẑ, where
B0 is the ambient magnetic field along the z-axis. The
normalization used here is (x, y, t, ψ, φ, n, v‖i) =
(x/a, y/a, vAt/a, ψ/εB0a, cφ/vAB0a, n/n0, δv‖i/vA).
Here, a and R are the minor and major radii, respectively.
c is light speed, ε = a/R is the inverse aspect ratio, ν is the
viscosity, η is the resistivity, and both the equilibrium ion
and electron density n0 are constant due to charge neutral-
ity. We suppose that the ion and electron temperatures are
constant by introducing their ratio τ = Ti/Te. The nor-
malized parameters δ and β are introduced as two fluid
parameters. The former is related to the ion skin depth
δ = (2ωciτA)−1, where ωci =

√
eB0/cmi is the ion cy-

clotron frequency, and τA = a/vA is the poloidal Alfvén
transit time. The latter is β = βe[1 + βe(1 + τ)/2]−1, where
βe = 8πn0Te/B2

0 is the electron plasma beta. One can find

that the ion Larmor radius is related to the cross product of
these two parameters, i.e., (ρi/a)2 = 2τδ2βe. The operator
[, ] denotes the Poisson bracket, [A, B] = ∇⊥A × ∇⊥B · ẑ.

3. Linear Calculation
3.1 Numerical settings

In this research, we adopt two-dimensional slab geom-
etry as an approximate model for the tokamak geometry.
Although, we cannot consider an internal kink mode in the
slab model, here we focus on the tearing mode that occurs
near the magnetic neutral sheet far from plasma bound-
aries. Generally, the slab model can capture mainly the
most dominant dynamics.

The model equations are solved numerically by us-
ing pseudo spectral code. We impose the zero boundary
condition for radial direction x, so all components are au-
tomatically set to zero at the radial boundary. A finite-
differential method is applied in the radial direction, and
a periodic boundary condition is imposed for the poloidal
direction y. The domain of the numerical simulations is
x = [0, 1] and y = [0, 1]. The number of grids in a
simulation box is 400 × 20. Temporal evolution is cal-
culated by using a predictor-corrector method with time
step Δt = 10−3. The pressure and magnetic flux equilib-
rium profiles are peq(x) = 0.25 (1 − tanh(x − 0.5)) /Lp, and
ψeq(x) = Ls ln[cosh(x − 0.5)/Ls]. We have no equilibrium
parts for either electrostatic potential φ or ion parallel ve-
locity v, i.e., φ = φ̃, v = ṽ. All calculations described in
this article are performed with ν = 10−6～10−4, η = 10−4,
and Dv = 10−4. These numerical values may be large com-
pared to the realistic transport coefficients in tokamak plas-
mas, and these higher values correspond to hyperviscosity
in the numerical calculations. This situation is suitable if
these coefficients include the effects of interaction between
the island and microscale turbulence. A temperature ratio
of unity τ = 1 is chosen, and the shear and density scale
lengths are set to Ls = 0.1 and Lp = 0.15, respectively. The
stability parameter Δ′ is positive only for the m = 1 mode,
and the other modes are all linearly stable. From now on,
we discuss the rotation frequency of the m = 1 mode.

3.2 Linear results
First, we examine island rotation by performing linear

calculation. All perturbed quantities Ã(x, y, t) are assumed
to vary as

Ã(x, y, t) =
∑

m

Am(x) exp
[
i(2πmy − ωmt)

]
,

where m is the poloidal mode number, ωm = iγm + Ωm is
the complex frequency, γm is the growth rate, andΩm is the
rotation (angular) frequency. Note that the island rotates
toward the electron diamagnetic drift frequency when Ωm

is positive. The linearized equations are
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We can control the strength of the magnetic field B0

in plasmas by changing β. In Fig. 1, the rotation frequency
of the m = 1 mode Ω (≡ Ω1) is illustrated as a function of
β for various δ. When δ is large, the rotation frequency be-
comes small, indicating that the FLR effect enhances island
rotation in the direction of ion diamagnetic drift. Com-
pared to δ, β dependence is found to be small. As shown
in these results, the island rotates toward electron diamag-
netic drift in the linear regime.

4. Nonlinear Calculation
In the previous section, we found that in the linear

regime the island rotates toward the electron diamagnetic
drift direction. However, in the regime where the island
width is quite large as compared to the linear tearing layer
width, the linear theory may be invalid. The NTM is in-
trinsically a nonlinear instability, therefore it is important
to know the direction of island rotation where the nonlin-
earity is important. In this section, we discuss the island
propagation direction in the nonlinear regime.

Fig. 1 Rotation frequency as a function of β for various δ.

4.1 Propagation direction in the nonlinear
regime

Figure 2 shows the temporal evolution of the rotation
frequency (blue line) and width (red line) of the island. The
rotation frequency and width are normalized by the lin-
ear electron diamagnetic frequency and minor radius, re-
spectively. In accordance with the linear results, the island
initially propagates toward the electron diamagnetic drift.
Since island rotation in the electron diamagnetic direction
is weakened by the linear ion diamagnetic drift effect, the
rotation frequency is small compared to the linear electron
diamagnetic drift frequency. As the island width exceeds
the linear tearing layer width and nonlinearity becomes ef-
fective, rotation toward the electron diamagnetic drift di-
rection gradually weakens. We can observe that at around
t = 260, the rotation direction changes. Finally, when is-
land growth reaches the saturate state, the island rotates
toward the ion diamagnetic drift direction.

4.2 Propagation with the zonal flow
In the preceding subsection we found that the island

can rotate toward the ion diamagnetic drift direction in the
nonlinear regime. Here, we consider the mechanism of the
rotation change in detail.

Figure 3 shows the temporal evolution of island
poloidal velocity and drift velocities. The red line repre-
sents the poloidal velocity of the island, the green one is
the electron diamagnetic velocity, the blue one is the zonal
flow velocity, and the orange one is the sum of the electron
diamagnetic and zonal flow velocities. Note that each ve-
locity is averaged over the flux surface. Initially, the island
propagates toward the electron diamagnetic direction. We
found that as the island width increases, the pressure is flat-
tened inside the island. After about t = 200, the flattening
begins to have an effect and the electron diamagnetic drift
weakens. Finally, the pressure is totally flattened inside
the island. On the other hand, the zonal flow is nonlinearly

Fig. 2 Temporal evolution of the rotation frequency (blue line)
and width (red line) of the island.
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Fig. 3 Temporal evolution of island poloidal velocity (red line),
electron diamagnetic velocity (green line), zonal flow ve-
locity (blue line), and the sum of the electron diamagnetic
and zonal flow velocities (orange line).

generated. We find that the poloidal velocity is the sum
of the electron diamagnetic drift and zonal flow velocities.
Eventually, as mentioned earlier, the pressure gradient is
flattened, so the island propagates with the zonal flow.

Snapshots of current density and pressure at two dif-
ferent times, (a) t = 267 and (b) t = 500 are shown in
Fig. 4. The separatrix (dotted line) is also plotted as a ref-
erence. Here, η = 10−4, ν = 5 × 10−6, δ = 0.02, β = 0.05,
and τ = 1.0. The horizontal and vertical axes (x, y) rep-
resent the radial and poloidal directions, respectively. The
magnetic neutral sheet lies at x = 0.5. A uniform magnetic
field B0 lies along the z-axis. Since the pressure gradient
is along the radial direction, the electron (ion) diamagnetic
drift moves upward (downward). In case (a), where the
island rotation is locked, the pressure is partially flattened
in the island. In case (b), the current density is found to
show complex structure due to excitation of higher modes.
We can observe in the saturation regime that the pressure is
totally flattened inside the island, whereas a residual pres-
sure profile is observed in traditional models, which do not
include the effect of parallel ion motion. We found that
parallel ion motion is an important factor in determining
the island rotation direction precisely, which is consistent
with Ref. [8].

Figure 5 shows the zonal flow velocity in the satura-
tion regime as a function of the viscosity in the saturation
regime. The island propagates toward the electron diamag-
netic drift in the high-collisional regime where the mag-
netic Prandtl number Pr = ν/η is approximately unity. The
zonal flow velocity monotonically increases with respect
to the viscosity. At around ν = 2.0 × 10−5, the propaga-
tion direction changes. The rotation direction is found to
depend strongly on the viscosity.

4.3 Energy transfer to zonal flow
In this subsection, we investigate the underlying

mechanism of the viscosity dependence of zonal flow ve-

Fig. 4 Contour plots of current density and pressure at two dif-
ferent times, (a) t = 267 and (b) t = 500.

locity in the saturation regime. Figure 6 shows the tempo-
ral evolution of the kinetic energy of each poloidal mode
for two viscosity cases, (a) ν = 5 × 10−6 and (b) ν =
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Fig. 5 Zonal flow velocity in the saturation regime as a function
of viscosity.
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Fig. 6 Temporal evolution of the kinetic energy of each poloidal
mode for two different viscosity cases, (a) ν = 5 × 10−6

and (b) ν = 3 × 10−5.

3 × 10−5. In both cases, only the m = 1 mode grows in
the linear regime. At around t = 80, island growth enters
the nonlinear phase, and the m = 0 mode, i.e., zonal flow,
is excited through nonlinear mode coupling. The growth
rate of zonal flow is twice that of the m = 1 mode, indi-

Fig. 7 Radial structures of zonal flow potential inside the island
for two viscosity cases, (a) ν = 5 × 10−6 and (b) ν =
3× 10−5 at different times t = 250 (blue line) and t = 550
(red line).

cating that zonal flow is generated mainly from the m = 1
mode. As seen in Fig. 6 (a), the zonal flow finally becomes
the most dominant mode in the saturation regime. In con-
trast, we can observe that in case (b) the zonal flow energy
decreases due to viscous damping and the zonal flow en-
ergy is the same or smaller than the energy of other modes.
In this situation, the mode structure of zonal flow can be
affected by that of other modes.

Figure 7 shows the radial structures of zonal flow po-
tential inside the island for two viscosity cases, (a) ν =
5 × 10−6 and (b) ν = 3 × 10−5. Two different temporal
snapshots, t = 250 (blue line) and t = 550 (red line), are
plotted for each case. The dotted lines indicate the separa-
trix at a given time. In case (a), the radial mode structure
is found to maintain a monotonically decreasing function
through the temporal evolution. On the other hand, in case
(b), the mode structure reverses its functional form in the
saturation regime. This is attributed to deformation of the
mode structure of zonal flow by other modes, as expected
from Fig. 6 (b).

4.4 The FLR effect on the rotation direction
Here, we investigate the effect of δ on the rotation fre-

quency in the nonlinear regime. Figure 8 shows the ro-
tation frequency as a function of island width for various
δ. The viscosity and β are ν = 3 × 10−5 and β = 0.05,
respectively. The rotation frequency decreases as δ in-
creases through the temporal evolution, suggesting that the
FLR effect enhances island rotation toward the ion diamag-
netic drift direction. Figure 9 shows the temporal evo-
lution of energy transfer to the zonal flow by nonlinear
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Fig. 8 Rotation frequency as a function of island width for vari-
ous δ.

Fig. 9 Temporal evolution of energy transfer to zonal flow by
the Reynolds stress (blue line), Maxwell stress (green
line), nonlinear ion diamagnetic stress (red line), and vis-
cous stress (cyan line) for (a) δ = 0.01, (b) δ = 0.015, and
(c) δ = 0.02.

stresses for three different FLR parameters: (a) δ = 0.01,
(b) δ = 0.015, and (c) δ = 0.02. We can observe that as
δ increases, the energy transfer to the zonal flow from the
nonlinear ion diamagnetic stress increases. We found that
zonal flow generation strengthens due to increase of the
nonlinear ion diamagnetic stress.

5. Conclusion
In conclusion, we have shown that the pressure is to-

tally flattened inside an island, and the island is carried by
nonlinearly generated zonal flow in the saturation regime.
This suggests that the rotation direction depends on ion
parallel motion, which is not taken into account correctly
in conventional models. We found that the rotation direc-
tion in the saturation regime is sensitive to the viscosity and
the FLR effect. As the viscosity becomes large, island ro-
tation toward the ion diamagnetic drift direction weakens.
This is found to originate from deformation of the radial
mode structure of the zonal flow by other modes. We have
also shown that the FLR effect enhances zonal flow gener-
ation, leading to island rotation toward the ion diamagnetic
drift direction.

More analyses including neoclassical effects, e.g., the
effect of bootstrap current, are necessary. They will be dis-
cussed in future work.
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