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Magnetic islands excited by resonant magnetic perturbations (RMPs) in helical plasmas are investigated.
A Rutherford-type equation is coupled with the time evolution equation of the radial electric field associated
with the neoclassical particle diffusion due to helically rippled magnetic fields. Using the model, bifurcation
between the excitation and the annihilation of non-rotating magnetic islands are newly observed, depending on
the magnitude of RMPs and the anomalous plasma viscosity. It is found that the transition between these states
is triggered by the change in the radial electric field profile in the vicinity of magnetic island.
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Forced magnetic reconnection due to resonant mag-
netic perturbations (RMPs) is of great interest in magnetic
fusion plasmas. Bifurcation of equilibria between with
and without magnetic islands is observed in helical devices
such as the LHD [1, 2] and the TJ-II [3], where the tearing
mode is linearly stable. In particular, spontaneous annihi-
lation of magnetic islands called ‘self-healing’ triggers the
improvement of plasma confinements. Magnetic islands
and stochastic layers in helical plasmas have been investi-
gated in the context of the three-dimensional resistive mag-
netohydrodynamics (MHD) equilibrium [4], and mecha-
nism of the self-healing is under investigation. Such bifur-
cation is also observed in tokamaks, and theoretical works
reveal that poloidal and toroidal rotations of plasmas play
key roles, screening the penetration of RMPs [5]. In helical
plasmas, the poloidal rotation is driven by E × B and dia-
magnetic drifts, where radial electric fields are produced
by the neoclassical particle diffusion associated with heli-
cally rippled magnetic fields [6]. Therefore, the poloidal
rotation might be associated with the self-healing mecha-
nism. In order to test this hypothesis, theoretical models
including finite Lamor radius (FLR) effects, such as the
neoclassical particle diffusion, are necessary.

In this paper, we introduce a simple theoretical model
describing the forced magnetic reconnection in helical
plasmas, and the bifurcation mechanism associated with
the poloidal rotation is examined.

The derivation of the model equations is outlined be-
low. We start from two-fluids equations including FLR ef-
fects based on the drift ordering [7]. Perpendicular elec-
tric current is composed of the polarization current, the
diamagnetic current and currents due to anisotropic pres-
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sure tensors. Neoclassical particle fluxes are perturba-
tively included by substituting gyrophase-averaged distri-
bution functions given by linearized drift-kinetic equations
into moment formulae of anisotropic pressure tensors. We
adopt a simplified version of the radial neoclassical par-
ticle fluxes given in Ref. [8]. For parallel electric cur-
rents, we focus on the regime where the bootstrap cur-
rent is less important than the inductive current. In fact,
the direction of the perturbed bootstrap current is not es-
sential for the bifurcation [1]. Similarly, the direct impact
of the polarization current on the magnetic island growth
is neglected. RMPs are introduced by finite edge bound-
ary conditions of perturbed magnetic fields. Considering
assumptions above, the asymptotic matching of inner and
outer boundary layer solutions in the vicinity of the rational
surface is performed. The so-called cosine-matching [9]
gives a Rutherford-type equation [10], where the island
width should be lager than the linear boundary layer width.
The so-called sine-matching [11] gives the torque balance,
which corresponds to the time evolution equation of the ra-
dial electric field. Density and temperature are assumed to
be flattened inside magnetic islands at each time step (no
diamagnetic drift), due to fast parallel transports. Then, the
poloidal rotation of magnetic islands is driven by the E×B
drift at the rational surface (stop in the plasma rest frame).

The model equations are:
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where {t, r} are the time and the radial position, respec-
tively. {w,Θ, Er} are the magnetic island width across the
O-point, the poloidal phase angle of the O-point and the
radial electric field, respectively. Note that w and Θ are
zero-dimensional, while Er depends on the radial position.
Ers is given by Ers = Er(rs), where rs is the radial posi-
tion of the rational surface. I1 is a numerical constant of
order unity [9], η‖ is the parallel resistivity, c is the velocity
of light, wvac is the vacuum island width depending on the
magnitude of RMPs, kθ is the poloidal wave number, B0

is the toroidal magnetic field, e is the elementary charge,
ε⊥ is the electric permittivity and μano is the anomalous
plasma viscosity observed in experiments [12]. Δ′0 < 0 is
the tearing mode stability parameter in currentless cylin-
drical plasmas without RMPs. CM is associated with the
Maxwell stress due to the interaction between magnetic is-
lands and RMPs [13], where CM is finite (zero) inside (out-
side) magnetic islands. Γneo

i and Γneo
e indicate ion and elec-

tron neoclassical particle fluxes give such that
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where the electrostatic quasi-neutrality is assumed. ne

is the electron density, {pe,Te} are the pressure and the
temperature of the electron and {pi,Ti} are those of the
ion, respectively. The prime indicates the radial deriva-
tive. {νi, νe} are the ion and electron collision fre-
quencies, respectively. Coefficients are given by C1 =

(15
√
π/8)(εtε

1/2
h /1.67e2) and C2 = 3B2

0/1.67c2εtεh, where
{εt, εh} are the inverse aspect ratio of torus and the helical
magnetic field modulation rate, respectively.

We numerically solve Eqs. (1)–(5) in the typical pa-
rameter of the LHD. Magnetic islands with (m, n) = (1, 1)
are considered, where {m, n} are poloidal and toroidal
mode numbers, respectively. Unperturbed equilibrium
profiles are given by q = 2.6 − 1.6(r/rs)1.3 with rs = 0.85,
Ti = Te = 2(1 − (r/a)2) + 0.2 [keV] and ne = 2 × 1019(1 −
(r/a)8) + 0.2 × 1019 [m−3], where q is the safety factor
and a is the minor radius. Several models for the flatten-
ing of density and temperature profiles inside magnetic is-
lands are examined, however the results are not essentially
changed. The radial electric field is negative, i.e. the ion
root [12], in the absence of magnetic islands.

The parameter dependence of the saturated island
width is examined (Fig. 1). It is found that the saturation
state shows the bifurcation, where the unperturbed current
sheet and the non-rotating magnetic island are replaced. In
a strict sense, the annihilation of magnetic islands indicates
that the island width is smaller than the linear boundary

Fig. 1 Dependences of the saturated island width on (a) the vac-
uum island width (μano = 5 m2/s) and (b) the anomalous
plasma viscosity (wvac = 5.1 cm).

Fig. 2 Radial profiles of radial electric fields with μano = 5 m2/s.
Dashed and solid lines indicate the profile with wvac =

0 cm and that with wvac = 7.4 cm, respectively.

layer width. If the neoclassical particle fluxes are excluded
in Eq. (3), there does not exist the bifurcation in the sat-
uration state, w = wvac. When non-rotating magnetic is-
lands are excited, the radial electric field inside magnetic
islands is simultaneously damped (Fig. 2). Although the
unperturbed radial electric fields are mostly determined by
the ambipolar condition, Γneo

i = Γneo
e , the balance among

three terms on the RHS of Eq. (3) becomes essential in the
presence of magnetic islands. Since density and tempera-
ture gradients are flattened inside magnetic islands, there is
no driving source of the neoclassical particle diffusion. In
consequence, the coupling of Maxwell stress and neoclas-
sical particle fluxes tends to damp the radial electric field
inside magnetic islands, which is similar to the damping
pendulum motion. While, the drag force acts in the oppo-
site direction, and tends to sustain the radial electric field.

In summary, the forced magnetic reconnection in he-
lical plasmas is investigated. It is found that the saturation
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state shows the bifurcation, when the poloidal rotation due
to the neoclassical particle diffusion is taken into account.
Detailed analyses and the comparison with experimental
observations will be examined in the future work.
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