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Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to
multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabil-
ities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified
ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the char-
acteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of
pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were
successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe
and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas.
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1. Introduction
Research on toroidal plasmas aiming at realization of

magnetically confined thermonuclear fusion enters a new
phase as construction begins of the International Ther-
monuclear Experimental Reactor (ITER), in which self-
heating by alpha particle will occur. Knowledge gained
from a database based on the experimental results obtained
from several tokamaks has influenced the design of the
ITER. An alternative design to the tokamak is the he-
lical system which, in principle, can sustain steady state
plasmas because its magnetic configuration is mainly pro-
duced by external coil currents. The activity to build a
database for helical systems has been initiated through a
series of Coordinated Working Group Meeting (CWGM)
and has produced an International Stellarator/Heliotorn
Profile Database (ISHPDB). It is important to create a
database in order to obtain a unified knowledge of heli-
cal plasmas, as the different helical devices differ in mag-
netic configuration (e.g. effective helical ripple and dom-
inant Fourier modes) and plasma parameters. Magneto-
hydrodynamic (MHD) stability, which affects the global
plasma confinement and/or particle transport, is studied us-
ing large amounts of data obtained at high sampling fre-
quency from multichannel diagnostics such as magnetic
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probe arrays, electron cyclotron emission (ECE) measure-
ments and soft-X ray diode arrays. Such large databases
require sophisticated methods of analysis.

Data mining techniques [1–3] based on statistics, pat-
tern recognition, artificial intelligence and information
technology have been used in the areas of distribution and
finance for business. Moreover, data mining techniques are
also used in the scientific fields of bio-informatics, astron-
omy and geology. Data mining methods can extract new
information because they are able automatic pick out pat-
terns (relationships between data points and parameters)
in large amounts of high-dimensional data. We apply a
data mining technique to analyze the fluctuation signals
within a large database in order to identify MHD instabili-
ties. Moreover, the entry of information about MHD insta-
bility classifications into a database enables us to exactly
and quickly investigate the characteristics of MHD stabil-
ity through parameter studies. The data mining technique
used here has been shown to be effective for the analysis
of MHD stability in H-1 [4] flexible heliac plasmas [5–7]
for the first time. We recently applied the data mining
technique to the Heliotron J [8] whose magnetic configura-
tions have magnetic well and low magnetic shear in whole
plasma. This is the next step study in order to obtain a uni-
fied knowledge and its effectiveness for the MHD stability
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of helical plasmas.
In this article, we discuss the data mining technique

and its effectiveness for the MHD stability analysis from
the results of H-1 and Heliotron J. Section 2 introduces
how to apply the data mining technique to magnetic probe
signals related to the MHD instability with a large amount
of data. Discussed are the procedures of data mining: pre-
processing and filtering of the data, the main clustering,
and visualization for the interpretation of results. Section 3
discusses the results of the MHD stability analysis, espe-
cially energetic-ion-driven MHD instabilities in Heliotron
J plasmas, through the parameter study. A summary is
given in Sec. 4.

2. Data Mining Technique for the
MHD Stability Analysis
The data mining process employed here consists of

three steps, (1) pre-processing, (2) main algorithm for clus-
tering and (3) visualization for the interpretation of results.
In order to analyze the MHD stability in helical plasmas
we choose, for our initial dataset, multichannel magnetic
probe signals such as those from a poloidal array, which
provides spatial information about MHD instability. The
numbers of magnetic probes belonging same poloidal ar-
ray are 28 and 14 channels in H-1 and Heliotron J, respec-
tively.

2.1 Pre-processing for the data mining
The extraction of spatial information about MHD in-

stabilities and the filtering out of noise from raw signals
are required for the data mining technique to be effective.
In order to achieve time resolution we split each shot into
short time segments, where the time window is short com-
pared to the plasma discharge time and long compared to
the MHD fluctuation time. For example, data are sampled
with 1 MHz, then we usually choose 1024 data points, that
is, a time segment of about 1 ms. In this article, we fo-
cus on the MHD instabilities, of which frequency and/or
amplitude usually change in the scale of Alfvén time, but
when bursting oscillation with rapid frequency and/or am-
plitude changes are occurring, the width of time segment
should be adjusted accordingly. We take the singular value
decomposition (SVD) of all magnetic probes signals for
each time segment to separate different MHD instabilities
and remove the small singular values, which contain low
signal energy and noise. The matrix S , which consists of
Nc × Ns where Nc and Ns are the number of channel and
data points within time segment, are represented by SVD.

S = UAV∗ (1)

where the column of U and V correspond to the spa-
tial (topo) and temporal (chrono) singular vector, respec-
tively. V∗ means the conjugate transpose of V and the
diagonal elements of A are the non-negative singular val-
ues. An example of SVD analysis of magnetic fluctua-

Fig. 1 Typical example of (a)∼(f) power spectra of each chrono
and (g) singular values in the NBI-heated plasmas of He-
liotron J where the line averaged electron density 〈ne〉 ∼
0.7×1019 m−3 and injected port-through NBI power Pinj ∼
0.5 MW. C0,C1, . . . ,C5 are the chronos of the singular
value 0, 1, . . . , 5 as shown in left figure. There are two
distinct modes having the frequency f ∼ 40 kHz for SV1
(C1) and SV2 (C2), and f ∼ 105 kHz for SV3 (C3) and
SV4 (C4).

tion signals, chrono power spectra and singular values of
magnetic probes of Heliotron J is shown in Fig. 1. Here
the plasma is produced by the electron cyclotron heating
(ECH) and heated and sustained by the neutral beam in-
jection (NBI). We can see two dominant modes having the
observed frequency fexp ∼ 40 kHz in Figs. 1 (b) and (c),
and fexp ∼ 105 kHz in Figs. 1 (d) and (e). Two chronos C1
and C2, and C3 and C4 have very similar frequency and
amplitude, respectively. SVD ideally can divide the trav-
elling wave such as rotating mode in the steady state with
single helicity into two singular values. Chronos C1 and
C2 are the orthogonal sine and cosine components of ob-
served MHD instability, which have very similar frequency
and amplitude under the condition that the coherence γ be-
tween C1 and C2 is high (e.g. γ > 0.7) as well as C3 and
C4. Group together singular values with γ > 0.7, then
these groups of singular values αl (e.g. α1 = {a1, a2} and
α2 = {a3, a4}) are the data points, where a is the singular
value. We take the inverse SVD to get matrix S l for each
fluctuation structure αl,

S l = UAlV
∗. (2)

The rows of the S l contain the time variation relating the
data points for each channel. The power spectra of the
topos have a peak at a frequency ωl. The phase difference
ΔψX,Y (ω = ωl) between nearest neighbor each channels X
and Y are mapped to the coordinates in Δψ-space with 2Nc

dimensions.
In this study, decomposition of the mode using SVD

can be done successfully because the mode is thought to
be global Alfvén eigenmode (GAE) having single toroidal
and poloidal mode, that is single helicity. If the mode has
multi helicity such as toroidicity-induced Alfven eigen-
mode (TAE), SVD may not be able to decompose the mode
into two singular values corresponding to the sine and co-
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Fig. 2 Δψ-space constituted by the phase differences of sine and
cosine components for each nearest neighbor magnetic
probes pairs of H-1. There are three collectives with dif-
ferent symbol and color. Each collective would pick out
by clustering method using the expectation maximization
(EM) algorithm.

sine component of the mode. In such case, we have to
apply other methods to decompose the mode.

2.2 Clustering
In the 2Nc dimensional Δψ-space, a class of fluctua-

tion of distinct MHD instability is localized as shown in
Fig. 2 from H-1 database. In the H-1 flexible heliac, the
plasmas included in our database are produced and heated
by the ion cyclotron range of frequency (ICRF) and co-
herent MHD instabilities driven by the energetic ions were
observed [5]. In Fig. 2, we can see three collectives with
different symbol and color in a Δψ-space consisted of co-
sine component in channel #7 and #8, and sine compo-
nent in channel #1 and #2 of magnetic probe. Sine and co-
sine components of nearest neighbor coil phases are used
to overcome the problem of finding a suitable metric in
space with 2π periodicity. Therefore, the Δψ-space used
for H-1 and Heliotron J has 56 and 28-dimensions, respec-
tively. We use the expectation maximization (EM) clus-
tering algorithm, which finds the most likely value of la-
tent variables in a probabilistic model [9]. Here we as-
sume that each type of fluctuation can be described by a
2Nc-dimensional Gaussian distribution in Δψ-space with
mean and standard deviation for each cluster as the set of
latent variables. The EM method consists of two steps, ex-
pectation step and maximization step, and the process is
repeated until convergence criterion is reached. The ex-
pectation step calculates an expectation of the likelihood
by including the latent variables, while maximization step
calculates the maximum likelihood estimates of the param-
eters by maximizing the expected likelihood found on the
expectation step.

2.3 Visualization
To visualize and check the result is important because

choosing the best number of clusters is very difficult to au-
tomate and the automatically calculated results may have
errors caused by insufficiency and/or mistake of parame-
ter settings for clustering. In the EM methods employed
for this study, we have to optimize the parameter for both
numerical scheme (e.g. convergence criterion) and maxi-
mization of expectation (e.g. Gaussian width).

Figure 3 shows a dendrogram, or cluster tree of re-
sults from H-1 data, which displays the cluster for each
Ncl meaning the number of cluster, below some maximum
value Ncl,max, with all clusters for a given Ncl forming a
single column. Each cluster plot shows fluctuation fre-
quency vs. κh, which is an experimental parameter propor-
tional to the rotational transform. The root of the tree at
Ncl = 1 includes all data points in the scan experiment of
rotational transform. Each child cluster is mapped to the
cluster on the parent level with which it shares the largest
common subset of data points. Cluster branches which do
not fork over a significant range of Ncl are deemed to be
well defined, and the point where well-defined cluster start
to break up suggests that Ncl it too high.

3. Application Results of Data Mining
and Parameter Studies
In this section, we discuss the results of our appli-

cation of the data mining technique to the Heliotron J
plasmas. We analyzed 3786 shots where all of 14 mag-
netic probes were acquired in the same conditions of iso-
lated amplifier and analog-to-digital convertor. The sig-
nals of all magnetic probes in this analysis have been ac-
quired at 1 MHz sampling frequency, and 1024 data points
were used for the short time segments (Δt ∼ 1 ms). The
size of database with multiple data points per time inter-
val exceeds 2.5 million data points, including the pre- and
post-discharge, and dud-discharge (no plasma data). In
our database, the magnetic field Bt is set as Bt = 1.25 T
and plasma is produced by 2nd harmonic resonance of
70 GHz electron cyclotron heating (ECH) in Heliotron J.
The plasma is heated by only ECH or only neutral beam
injection (NBI) or combination heating of ECH and NBI
with discharge duration t = 120∼150 ms. In order to retain
only significant data points, which correspond to plasma
discharge, we considered the Hα signal for each data point
produced by the pre-processing discussed above. We ap-
plied the filter related to the intensity of Hα signals to
the database as shown in Fig. 4 (a) where almost all plas-
mas are produced by ECH at t ∼ 165 ms. Shown in
Fig. 4 (b) is the removed noises, containing signals caused
by non-plasma sources. The data without time dependence
(e.g. frequency f ∼ 210 kHz, 440 kHz, . . . , and so on) in
Fig. 4 (a) is coherent electromagnetic noise related to the
operation of experiment. Moreover, we have also removed
the data below 2 kHz in order to reduce the size of the
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Fig. 3 An Example of cluster tree for MHD instabilities observed in H-1. In all figures, the data are plotted in the rotational transform
specified helical coil parameter κh and frequency space.

Fig. 4 (a) All data points with high coherence γ > 0.7 plotted as time (ms) and frequency (kHz) after Hα filtering out process. (b)
Removed noise contained the pre-, post- and dud-discharge.

dataset for clustering, retaining the higher frequency fluc-
tuations, some of which have previously been identified as
Alfvén eigenmode destabilized by the energetic ions with
Alfvénic velocity produced by NBI heating [10]. There
are some difficulties to apply the SVD to low frequency
fluctuation because their frequency spectra are broadband.
Figure 5 shows nine clusters, which are well-defined by
the data mining technique using EM algorithm. It seems
that the data plots having frequencies f = 210 kHz and
430 kHz without time variation in Fig. 5 (f) are not MHD
instabilities but electromagnetic noise. The frequency of
MHD instabilities in each cluster shown in Fig. 5 is in the
range of frequencies f = 20∼150 kHz which is close to
the frequency of shear Alfvén continua with positive low-

m and n (m and n the poloidal and toroidal mode num-
bers). Figure 6 shows the phase differences between each
magnetic probe for each cluster shown in Fig. 5 calcu-
lated using the fast Fourier transform (FFT). Each label
(a)∼(i) in Fig. 6 corresponds to those in Fig. 5. The esti-
mated poloidal mode number m for each cluster is indi-
cated in Fig. 6. Although the direction of propagation of
the observed mode is different, the observed modes have
low poloidal mode numbers of |m| < 4. Here, the sign
of poloidal mode number corresponds to the propagation
direction of the mode with m > 0 and m < 0 respec-
tively corresponding to the electron- and ion-diamagnetic
drift directions for the condition of Bt > 0. To investi-
gate why the observed high frequency mode propagates in
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Fig. 6 Phase differences of magnetic probes are illustrated for nine clusters shown in Fig. 5. The vertical and horizontal axes mean
the phase differences between magnetic probe #1 corresponding 180 (deg.) and each magnetic probe, and poloidal angle of each
magnetic probe in degree. The number near each point indicates the label of magnetic probe. The estimated poloidal mode number
m of each MHD instabilities is also indicated in each figure.

Fig. 5 Nine clusters defined in phase space are shown. Each fig-
ure shows the time variation of frequency of data points
within each cluster observed in Heliotron J. The number
of discharge with observed MHD instabilities belonging
each cluster is indicated at the upper of each figure.

the different two directions, we searched the magnetic field
strength in the database as show in Fig. 7 (a). As a result
of comparison between cluster in Fig. 6 and Fig. 7 (a), al-
most all of observed modes propagate in the diamagnetic

drift direction of ions. The energetic-ion-driven MHD in-
stabilities propagate in the diamagnetic drift direction of
ions because the profile of energetic ions, which can reso-
nantly couple with the energetic-ion-driven MHD instabil-
ities, usually has a peak at the plasma center and monoton-
ically decreases toward the plasma edge. The advantage of
data mining technique is that it is easy to investigate the
characteristics of observed MHD instability through the
parameter study. We compared the clusters and the mag-
netic configuration specified by the edge rotational trans-
form at vacuum and bumpy strength as shown in Figs. 7 (b)
and 7 (c), respectively. Although the Heliotron J database
does not have a great variety of magnetic configurations,
we can see that energetic-ion-driven MHD instabilities are
dependent on the configuration. The MHD instabilities in
cluster 3 were observed in all magnetic configurations in
our database. In previous study in Ref. 10, we identified
the observed modes as energetic-ion-driven MHD instabil-
ities with m = 2 and 4, which correspond to the clusters 2,
4, 6, 7, 8, and 9, that is, the cluster 1, 3 and 5 with m = 3
are newly identified as the energetic-ion-driven MHD in-
stabilities. It is noted that the observed modes with same
absolute poloidal mode number |m| belonging to different
clusters might be the same MHD instability. This is be-
cause the clustering only uses the phase differences and
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Fig. 7 Parameter dependencies of each cluster of which number showed as horizontal axis corresponds to the number of cluster in
Figs. 5 and 6. (a) magnetic field strength Bt for each cluster, (b) rotational transform at edge, (c) label of bumpy field where the
value indicates the ratio of coil current for two kinds of toroidal coil, and (d) data of NBIs. NBIS910V and NBIS34V are the
acceleration voltage of beam line 1 and 2 of NBIs. NBIS9I and NBIS10I are the beam current of ion sources consisted of beam
line 1, respectively. NBIS3I and NBIS4I are the beam current of ion sources consisted of beam line 2, respectively.

therefore will distinguish between opposite poloidal rota-
tion direction determined by the direction of the magnetic
field. In order to identify the observed MHD instabilities in
each cluster, we investigated the NBI conditions. Almost
all observed MHD instabilities were observed in the co-
injected NBI heated plasma. From these results we iden-
tified the observed MHD instabilities in the nine cluster
as energetic-ion-driven MHD instabilities destabilized by
the co-flowing energetic ions. In the future plan, we will
optimize the pre-processing and clustering algorithm and
expand the database regarding to several plasma parame-
ters in order for more clear identification of energetic-ion-
driven MHD instabilities and low frequency MHD insta-
bilities which tend to have broadband frequency spectra in
Heliotron J.

4. Conclusion
We applied a data mining technique to multichannel

magnetic probe signals to analyze the MHD fluctuations in
several helical plasmas in order to get unified knowledge
of helical plasmas with three-dimensional magnetic con-
figuration. Pre-processing for the data mining technique
uses the SVD to search the coherent fluctuations, which

would correspond to the MHD instabilities, and to remove
noise and unnecessary signals with low intensity. The clus-
tering using EM successfully classified the MHD instabili-
ties from a very large database. We identified the observed
MHD instabilities as energetic-ion-driven MHD instabili-
ties such as global Alfvén eigenmodes due to the parameter
study using the database including results of the data min-
ing technique and some plasma parameters such as mag-
netic field strength and rotational transform.
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