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A hierarchical entropy balance equation retaining the dynamics in the radial direction is introduced to study
non-local turbulent transport and the associated global profile relaxation. It consists of first- and second-order
equations that describe the entropy dynamics related to thermodynamics/fluid quantity and the corresponding
micro-scale phase space fluctuations, respectively. Specifically, the second-order equation describes not only
a local entropy production related to heat and density flux (i.e., zonal flow), but also the spatial convection of
perturbed entropy. We investigated the entropy dynamics in ion-temperature-gradient driven turbulence based
on a global gyrokinetic Vlasov simulation in slab geometry. Entropy convection plays an important role in the
relaxation dynamics dominated by the avalanche process. A self-organized relaxed state is established, in which
short-wavelength temperature corrugation, i.e., zonal pressure, is regulated by zonal flow shear.
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Turbulent transport in magnetically confined fusion
plasmas exhibits various prominent features characterized
by different temporal and spatial scales. Zonal modes,
such as zonal flow and pressure, which are poloidally and
toroidally symmetric macro-scale structures nonlinearly
generated from micro-scale turbulence, play an important
role in regulating turbulent structure and then transport [1].
These zonal modes are considered to be tightly linked to
non-local characteristics of turbulent transport that are not
explained by the Gaussian statistics, such as intermittent
transport, turbulent spreading [2], and avalanche dynam-
ics, etc. Self-organized critical (SOC) transport [3] is also
an example in which the turbulence provides a strong con-
straint on relaxation, leading to a self-organized stiff tem-
perature profile.

To characterize such transport dynamics, phase space
entropy, which connects micro-scale turbulent structure
to macro-scale thermodynamic quantities, has been intro-
duced [4]. However, the entropy has been generally treated
as a global quantity that is integrated over phase space, so
that the effects of zonal flow and turbulent spreading do not
appear explicitly in the entropy balance equation. As the
result, the non-local nature of transport is hardly discussed.

To address this problem, we extend the entropy bal-
ance equation by retaining the dynamics in the radial
direction. We start with a four-dimensional (4D) gy-
rokinetic model for electrostatic ion-temperature-gradient
(ITG) driven turbulence in slab geometry. The normalized
basic equation system is given by the gyrokinetic Vlasov
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and Poisson equations:
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where f (t; x, y, z, v||) and Φ(t; x, y, z) are the gyro-center
distribution function for ion and electrostatic potential, re-
spectively, and τ ≡ Ti/Te. 〈 〉yz denotes the average along
the y (poloidal) and z (toroidal) directions. Here, ρi (ion
Larmor radius)� λi (ion Debye length) is assumed.

An entropy balance equation that retains the dynam-
ics in the x (radial) direction is obtained by multiplying
Eq. (1) by 1 + log f and integrating it over (y, z, v||) space.
The equation can be separated by assuming ε ∼ δ f / f0 ∼
1/k⊥LT as an expansion parameter, i.e.,
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where d3Z = dydzdv||, LT(x) = −∂x ln T (x) and periodic
boundary conditions are employed in the y and z direc-
tions. f0 and δ f = f − f0 are the Maxwellian distribu-
tion function and its perturbed part, respectively. Here,
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Fig. 1 Time history of the potential energy for each poloidal mode number (m = 0-9) in the case of (A) LT0 = 37 and (B) LT0 = 148.
Arrows mark the time shown in Fig. 2.

the first- and second-order entropies are defined as s(1) ≡
−δ f (1 + log f0) and s(2) ≡ −δ f 2/2 f0. Note that the sum
of Eqs. (3) and (4) corresponds to d(s(1) + s(2))/dt = 0.
δU(0,0) ≡ −

∫
∂yΦδ f dZ3 = − ∫

∂yΦδndydz and δQ(0,0) =

− ∫
∂yΦv

2
||δ f dZ3 = − ∫

∂yΦδTdydz represent the density
and heat flux, respectively. It should be noted that δU(0,0)

is equivalent to the production rate of zonal flow [5], shown
by the relation,
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which is obtained by multiplying Eq. (2) by ∂yΦ and inte-
grating it over (y, z) space, and also from the Hasegawa-
Mima equation integrated over (y, z) space,
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The first (EP1), second (HF1) and third (DF1) terms on the
left-hand side (LHS) of Eq. (3) correspond to the first-order
entropy production related to fluctuation, heat and density
flux, respectively, whereas the first (EP2) and third (DF2)
terms on the LHS and the first term (HF2) on the right-hand
side (RHS) of Eq. (4) represent the corresponding second-
order quantities. The second term (EC2) in Eq. (4) repre-
sents the divergence of the second-order entropy flux and
forms a continuity equation coupled with (EP2). We re-
fer to this process as perturbed entropy convection, which
is considered to be related to turbulent spreading. Equa-
tion (3) describes the thermodynamics/fluid entropy, which
does not produce net entropy. On the other hand, net
entropy is produced from (HF2) in Eq. (4), which corre-
sponds to the source term driving the spatial dynamics of
s(1) and s(2).

In this study, we investigate the entropy dynamics in
ITG turbulence with global profile relaxation using a 4D
(i.e., 3D in real space and 1D in velocity space) gyrokinetic
full-f Vlasov simulation based on the IDO-CF scheme [6].
We employ a shear-less slab geometry with a system size
of Lx = 2Ly = 64 and Lz = 8000 in real space and Lv = 10

in velocity space. Periodic boundary conditions are em-
ployed in all the directions (x, y, z) and a grid number of
(Nx,Ny,Nz,Nv||) = (256, 128, 32, 256) is typically chosen.
The density and electron temperature are assumed to be ho-
mogeneous, whereas the ion temperature has a radial pro-
file given by T (x) = 1 − Lx/(2πLT0) cos(2πx/Lx).

Figure 1 illustrates the time history of the potential en-
ergy for each poloidal harmonics in two cases: (A) LT0 =

37 and (B) LT0 = 148. Zonal flows are observed to dom-
inate the saturation and subsequently suppress the turbu-
lence in the both cases, whereas the saturation levels show
a difference of about one order in potential amplitude, as
expected from the mixing length estimate.

We investigate the entropy balance relation in each
term of Eq. (4) given by (EP2), (HF2), (DF2) and (EC2)
in Fig. 2 at different times marked by arrows in Fig. 1. The
LHS and RHS columns show each term in the case (A)
and (B), respectively. The temperature profile is also illus-
trated.

In Fig. 2 (A1), which shows the phase near saturation,
the second-order heat flux (HF2) is induced because of the
excitation of ITG mode where the temperature gradient is
steep around (a). Note that (HF2) (∝ δQ(0,0)) is related to
the first-order heat flux (HF1) (∝ ∂xδQ(0,0)), which causes
the temperature relaxation as is found from the relation
∂tδT(0.0) � −∂xδQ(0,0). At this stage, a significant portion
of perturbed entropy is found to be convected from the re-
gion (a) to both the outer regions (b1) and (b2) (see the
profile of (EC2)). Local flattening of the temperature then
triggers secondary steepening around (b1) and (b2), so that
the subsequent instability takes place. Consequently, as
seen in Figs. 2 (A2) and (A3), a step-like temperature pro-
file is exhibited, whereas the front evolves continuously
on both sides, accompanied with the coupling between the
perturbed entropy production (EP2) and convection (EC2),
showing the characteristics of avalanche propagation. Note
that the effect of second-order density flux (i.e., zonal flow
production) (DF2) is found to be weak in terms of entropy
balance in this case.

On the other hand, in the case of (B), where ITG in-
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Fig. 2 Spatial profile of each term in the second order entropy
balance equation (Eq. (4)) in the case (A) at different
times: (A1) 9.0 × 103, (A2) 1.0 × 104, (A3) 1.05 × 104,
and in the case (B) at different times: (B1) 4.4×104, (B2)
4.5× 104, (B3) 4.6× 104. Note that the temperature scale
is different.

stability is weak, the effect of perturbed entropy convec-
tion (EC2) also becomes weak. Instead, the zonal flow
production (DF2) is found to become stronger as seen in
Figs. 2 (B1) and (B2). Note that the second-order heat flux
(HF2) shows a clear correlation with the zonal flow pro-
duction (DF2) because (HF2) (∝ δQ(0,0)) increases or de-
creases in the region where (DF2) (∝ ∂t(∂xφ(0,0))) becomes
negative [(d)] or positive [(e1), (e2)], respectively, as seen
in Fig. 2 (B2). This result suggests that the observed local
temperature relaxation, ∂tδT(0.0) � −∂xδQ(0,0), is related
to the production rate of zonal flow shear, i.e., ∂t(∂2

xφ(0,0)).
Namely, the zonal flow locally modulates the heat flux so
that a corrugated temperature profile is established. Note
that the phase relation between δT(0.0) and ∂2

xφ(0,0) (180◦

out of phase) differs from that of conventional relation of
shearing suppression by zonal flows (90◦ out of phase). A
similar phase relation has been discussed in terms of ra-
dial force balance in some other studies [7]. Also, spectral

analysis shows that δT(0.0) has almost same wave number
(k(z)

x ∼ 2π/6ρi) as ∂2
xφ(0,0). Under these constraints, a self-

organized relaxed state with short-wavelength temperature
corrugation, i.e., zonal pressure, is globally established, as
seen in Fig. 2 (B3). It is considered that the perturbed en-
tropy convection (EC2) plays a role in expanding the radial
region of turbulent transport, as in the case of (A).

In conclusion, we investigated the global profile relax-
ation due to ITG turbulence based on an entropy balance
equation retaining the dynamics in the radial direction. We
found that the relaxation is dominated by the avalanche-
like front propagation in the case of a steep temperature
gradient where perturbed entropy convection, which corre-
sponds to turbulent spreading, plays an important role. On
the other hand, in the case of a gentle gradient, where the
second-order heat flux (HF2) is strongly correlated with
the zonal flow production (DF2), a self-organized relaxed
state is established, which is characterized by a spatially
corrugated short-wavelength zonal pressure. We found
that the wave number and phase of the zonal pressure are
regulated by the zonal flow shear. Thus, the transport
shows qualitatively different characteristics depending on
the temperature scale length. The global scale length may
be determined by source and sink terms, which needs to be
further investigation in future.

This work was supported by the Grant-in-Aid from
JSPS (No. 19560828, No. 19560832 and No. 21340171).
It was also partially supported by the JSPS-CAS (Japan-
China) Core University Program and NIFS/NINS under
the projects of Formation of International Network for Sci-
entific Collaborations.

[1] A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59, 1581
(1987).

[2] T.S. Hahm, P.H. Diamond, Z. Lin, K. Itoh and S.-I. Itoh,
Plasma Phys. Control. Fusion 46, A323 (2004).

[3] Y. Kishimoto, T. Tajima, W. Horton, M.J. LeBrun and J.Y.
Kim, Phys. Plasmas 3, 1289 (1996).

[4] T.-H. Watanabe and H. Sugama, Phys. Plasmas 9, 3659
(2002).

[5] P.H. Diamond, O.D. Gurcan, T.S. Hahm, K. Miki, Y. Kosuga
and X. Garbet, Plasma Phys. Control. Fusion 50, 124018
(2008).

[6] K. Imadera, Y. Kishimoto, D. Saito, J.Q. Li and T. Utsumi,
J. Comput. Phys. 228, 8919 (2009).

[7] S.E. Parker, C. Kim and Y. Chen, Phys. Plasmas 6, 1709
(1999).

019-3


