
Plasma and Fusion Research: Regular Articles Volume 5, 017 (2010)

Beyond the Intelligent-shell Concept: the Clean-mode-control for
Tearing Perturbations∗)

Paolo ZANCA
Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy

(Received 24 July 2008 / Accepted 29 January 2010)

The Intelligent Shell scheme, where a grid of active coils counteracts in a feedback scheme the measurements
provided by an identical grid of sensors, has shown some limitations in the control of the dynamo tearing modes
in RFX-mod. The origin of the problem is the aliasing on the measurements coming from the high periodicity
sideband harmonics produced by the discrete nature of the active coils. A more efficient feedback on tearing
modes is obtained by removing the sidebands from the measurements, thereby counteracting the true tearing
Fourier modes. In this scheme, named Clean-Mode-Control, the sidebands are computed in real time from the
coils currents using the cylindrical geometry approximation. The Clean-Mode-Control significantly alleviates
the wall-locking of tearing modes in RFX-mod, giving the possibility of operating at a plasma current (1.5 MA)
never reached before in a RFP machine. These features are well explained by a MHD model describing the tearing
mode dynamic under the viscous torque due to the fluid motion and the electromagnetic torques produced by the
feedback, the conductive structures surrounding the plasma and the non-linear interaction between the different
modes [P. Zanca, Plasma Phys. Control. Fusion 51, No. 1, 015006 (2009)]. Here some new results obtained with
this model are discussed. In particular we will show that the edge radial field control improves by reducing the
ratio between the delay introduced by the digital acquisition of the measurements and the time constant of the
shell that contains the plasma. In this formulation the active coils are assumed to be located outside the shell.
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1. Introduction
In a magnetic confinement fusion device the presence

of a conductive wall (shell) surrounding the plasma is im-
portant to guarantee a good magnetohydrodynamic (MHD)
stability. However the finite penetration time of the ra-
dial magnetic field of any realistic shell determines po-
tentially dangerous MHD phenomena, among which the
wall locking of tearing modes (TM) [1, 2]. When the am-
plitude at the resonant surface is above the wall-locking
threshold the mode is practically arrested in the labora-
tory frame and the stabilizing effect of the shell is lost:
the TM radial field penetrates the shell and its amplitude
considerably increases. Both in tokamaks and in reversed
field pinches (RFP) this determines severe plasma-wall in-
teractions and can lead to premature termination of the
discharges. For example, in the RFX-mod reversed field
pinch experiment [3] it is not possible to raise the plasma
current above 500 kA and to have discharges lasting more
than 150 ms, with the only stabilization provided by a shell
whose characteristic penetration time, the shell time con-
stant, is 0.1 s. However, we have to underline that the sta-
bilizing effect of this shell on the TMs is reduced by the
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presence of a far more resistive inner vacuum vessel (3 ms
time constant), which decreases to very low amplitude the
TMs wall-locking thresholds [2]. RFX-mod has demon-
strated the possibility to overcome these limitations with
the active control of the edge radial field, made possible
by a grid of active coils, placed outside the shell, fully
covering the torus. The first scheme tested, the so-called
intelligent-shell (IS) [4], in which the coils are coupled in
a feedback scheme with the measurements provided by an
identical grid of radial field sensors, improves the plasma
performances by preventing the radial field penetration of
the shell [5]: besides a complete suppression of the resis-
tive wall modes [6], the TMs edge amplitude is kept at a
low value. In RFPs TMs in the non-linear regime are re-
quired by the dynamo mechanism in order to maintain the
reversed configuration [7,8]. Therefore these perturbations
would exist even in the presence of a perfectly conducting
shell. This means that, in general, a feedback system can-
not suppress the non-linear dynamo TMs, but at the best
it can keep to low values their edge amplitudes. A recent
upgrade of the intelligent shell developed in RFX-mod, the
clean-mode-control (CMC) [9, 10], leads to a better con-
trol of the TMs. In fact it fixes the TMs edge amplitudes
at a lower level than the intelligent shell. Even more im-
portant, it maintains TMs into rotation for amplitudes at
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the resonant surfaces that are well above the wall-locking
thresholds, while with the IS scheme TMs are observed to
be always stationary in the laboratory frame. Even if these
rotations occur at frequencies much smaller than the values
related to the unperturbed fluid motion, they are enough to
guarantee a good spread of the power deposition onto the
first wall. The CMC is based on the real-time de-aliasing
of the measurements from the high periodicity sidebands
produced by the discrete nature of the active coils: the
feedback variables are not the raw measurements, as in the
intelligent shell, but the poloidal and toroidal m, n Fourier
harmonics related to TMs, estimated as much correctly as
possible with the sidebands subtraction. The basic effects
of the CMC, namely TMs rotation and shell penetration
avoidance are explained by a model solving the single fluid
motion equation for several TMs at the same time, taking
into account the viscous torque due to the fluid velocity and
the electromagnetic torque developed by the interaction
with the shell, the feedback currents and the non-linear in-
teraction between different tearing modes [11]. This model
can be viewed as a generalization to non-ideal boundary
conditions, i.e. resistive shell and feedback, of the phase-
locking code presented in reference [12]. Here we discuss
some new results obtained with the model, which complete
the analysis presented in [11].

2. The Clean Mode Control
To ease the discussion it is convenient to adopt cylin-

drical geometry with right-handed coordinates (r, θ, φ ≡
z/R0). We assume that the plasma, whose minor radius
is r = a, is contained by a vacuum vessel modeled by a
uniform resistive shell (the effects of gaps and holes are
not considered in this analysis) of thickness δw, inner and
outer radii respectively rwi, rwe = rwi + δw. The shell time
constant is defined by τw = μ0 rwi δw σ, being σ the shell
conductivity. The single shell configuration is the best case
to investigate all the basic aspects of the problem. Out-
side the shell at the radius r = c we have a grid of Nc-
turn active coils, fully covering the torus. Both the active
coils and radial field sensors, that we imagine to be placed
at r = rwi, are rectangles of poloidal and toroidal extent
Δθ = 2π/M and Δφ = 2π/N respectively, centred at the
angles θi = 2π/M · (i− 1), i = 1, . . .M, φ j = 2π/N · ( j− 1),
j = 1, . . .N. The coil currents Ii, j (= the total current in the
i, j coil) and radial field measurements br

i, j univocally de-
fine the set of discrete Fourier transform (DFT) harmonics
bm,n

r,DFT, Im,n
DFT:

bm,n
r,DFT =

1
N M

∑
i=1,M
j=1,N

br
i, j e−i(mθi+nφ j),

Im,n
DFT =

1
N M

∑
i=1,M
j=1,N

Ii, je
−i(mθi+nφ j).

(1)

Concerning the radial field, the Fourier modes are the
physically relevant quantities, while in general the DFT
harmonics are affected by the sidebands aliasing:

bm,n
r,DFT =

∑
p=m+lM

q=n+kN

{l,k}∈Z

bp,q
r (rwi) f (p, q), (2)
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)
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(
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)
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/
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)
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(3)

Due to their discrete nature, the active coils produce an in-
finite sequence of sidebands in the radial field, which enter
in aliasing in expression (2):

bp,q
r (rwi, t) = �p,q ·

t∫
0

eAp,q(t−ξ)Im,n
DFT(ξ) dξ, (4)

�p,q = μ0 K′p

( |q| c
R0

)
I′p

( |q| rwi

R0

)
q2 c

R2
0

f (p, q) Ap,q,

(5)

Ap,q =
1
τw

⎛⎜⎜⎜⎜⎜⎝p2/

(
q rwi

R0

)2

+ 1

⎞⎟⎟⎟⎟⎟⎠ /
(
K′p

( |q| rwi

R0

)
I′p

( |q| rwi

R0

))
.

Formulas (4,5) are the standard vacuum solution for the
radial magnetic field in terms of the modified Bessel Func-
tions Ip, Kp, with the shell penetration described by the
thin-shell dispersion relation [9]. In fact if M,N are large
enough, the sidebands do not correspond to any unstable
plasma mode and they can be estimated from the coils
currents using the vacuum approximation [9]. In the IS
scheme the feedback variables are the measurements br

i, j

Fig. 1 Statistical analysis of the m = 1 TMs radial field ampli-
tudes averaged between 20-200 ms for Ip ≈ 600 kA shots
in RFX-mod.
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Fig. 2 Statistical analysis of the m = 1 TMs radial field normal-
ized amplitudes. All the quantities are averaged between
20-200 ms

or equivalently the discrete harmonics bm,n
r,DFT. Due the

aliasing effect this is not the best method to counteract
the plasma perturbations. Instead in the CMC scheme the
feedback variable are the Fourier modes bm,n

r related to the
plasma perturbations: the sidebands p � 0, or q � 0 are
computed in real-time from the coils currents using (4,5),
and then subtracted in the expression (2) [9]. Of course,
the aliasing effect in (2) can be reduced to negligible lev-
els if the sensors and the active coils have very different
periodicities in poloidal and toroidal directions. In this
case the sidebands subtraction could not be necessary. As
shown in Fig. 1, the IS control reduces the DFT harmonics
of the measurements at a noise level (about 0.1 mT): the
larger value observed for the Fourier mode amplitudes is a
consequence of the sideband effect represented in formula
(2). CMC indeed improves the control on the Fourier mode
amplitudes. This figure considers the RFX-mode dynamo
modes, which are the internally resonant m = 1, n ≤ −7
TMs. A secondary branch of m = 0 modes with a large n
spectrum resonating at the reversal surface (q = 0) is im-
portant for the non-linear interaction with the m = 1. The
good edge amplitude control obtained with CMC produces
a shrinking of the spectrum towards a quasi-single-helicity
state (QSH), where we have a dominant mode, the inner-
most resonant m = 1 n = −7, and a tail of secondary modes
(m = 1, n < −8). This is illustrated in Fig. 2, where the ra-
dial field is extrapolated at r = a by combining the radial
and toroidal field measurements available at r = rwi [9].
The QSH brings a reduction of the global plasma stochas-
ticity [13]. As said in the introduction, while with the IS
TMs are stationary in the laboratory frame, CMC main-
tains them into rotation. This is shown in Figs. 3 (a), (b),
where the radial displacement ξ1 of the plasma surface due

(a)

(b)

Fig. 3 (a) Waveforms of the plasma surface distortion ξ1(φ) due
to the m = 1 TMs, taken at different times. The dis-
placement is computed adding the contributions of the
n = −1 ∼ −23 modes. Shot 18942 with IS. (b) Same
quantities of (a) on the shot 22805 with CMC.

to the m = 1 TMs overlapping (obtained from the linear
ideal-MHD Faraday-Ohm’s law br(a, θ, φ) = B0 · ∇ξr, be-
ing B0 the equilibrium field) is plotted as function of the
toroidal angle. Each curve represents a different time. In
the IS case (a) we have a localized distortion, produced by
the TMs phase-locking, which remains almost stationary
in the laboratory frame; in the CMC case (b) the distor-
tion moves around the torus and occasionally disappears.
These movements are due to the fact that CMC maintains
the individual TMs into rotation. Since the power deposi-
tion onto the first wall is associated to the localized distor-
tion, the plasma-wall interaction is considerably mitigated
with CMC. This beneficial effect, combined with the good
control of the secondary modes amplitudes, allows reliable
operations at 1.5 MA toroidal plasma current and discharge
duration about 0.5 s [10].

3. Model Equations
The feedback effect on the dynamo TMs can be de-

scribed by a model, explained in details in reference
[11], considering the single fluid motion equation for the
toroidal and poloidal flux-surface averaged angular veloc-
ities:
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ρ
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∑
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δ
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(7)

Here μ is the plasma perpendicular viscosity, ρ is the den-
sity, τD is the poloidal flow damping time and S φ, S θ
are phenomenological steady momentum source densities
which maintain the plasma rotation: for sake of simplic-
ity we assume all these quantities to be constant with r.
The vanishing of the velocities at r = a, and of their radial
derivatives at r = 0 are taken as boundary conditions. The
terms in the summation are the angular integrated electro-
magnetic torques, which develop in the proximity of the
modes resonant surfaces (q(rm,n) = m/n). They incorpo-
rate the contributions of the non-linear interaction between
different TMs, the interactions with the image currents in-
duced onto the shell and with the feedback coils currents.
It is a standard result that the electromagnetic torque can
be expressed by non-linear combination of the Newcomb’s
equation solutions for the TMs radial magnetic field per-
turbations (modes eigenfunctions) [2, 14]. The explicit ex-
pressions, valid when the plasma is surrounded by a resis-
tive shell, are given in [11] (the zero-pressure condition is
assumed for sake of simplicity). The Newcomb’s solutions
are everywhere continuous, but their radial derivative may
have jumps across the resonant surfaces and the active coils
radius (the active coil radial thickness is neglected). More-
over these solutions are not valid inside the shell region
where another equation holds. Therefore, the Newcomb’s
solutions for each m, n TM are joined at r = rwi and r = rwe

with an equation derived in [15], describing the radial field
diffusion inside the shell in the limit δw � rwi:

τw
∂bm,n

r

∂t
= δw rwi

∂2bm,n
r

∂r2
; r ∈ [rwi, rwe] . (8)

Note that Eq. (8) is more general than the thin-shell dis-
persion relation [15], since it takes into account the radial
field variation inside the shell. The radial field discontinu-
ity at r = c is related to the coils currents by the following
relations obtained from the Ampere’s law [16]:

∂bm,n
r

∂r

∣∣∣∣∣∣
c+

c−
= − μ0

⎛⎜⎜⎜⎜⎝m2

c2
+

n2

R2
0

⎞⎟⎟⎟⎟⎠ f (m, n) Im,n
DFT. (9)

In this model, the current harmonics are provided by the
following feedback equations:

τd
d
dt
wm,n

r + wm,n
r = bm,n

r (rf , t), (10)

Im,n
ref =

rf

μ0

(
Km,n

p w
m,n
r + Km,n

d

d
dt
wm,n

r

)
, (11)

Vm,n
DFT =

Rc

Nc
Im,n
ref , (12)

Vm,n
DFT =

Rc

Nc
Im,n
DFT + lm,n

dIm,n
DFT

dt
+ λm,n dbm,n

r (rwe)
dt

. (13)

In (10) a ≤ rf ≤ rwi is the control radius (we assume
that the radial field can be extrapolated in the entire vac-
uum region between plasma and shell as in RFX-mod),
and dwr/dt is the signal acquired by the feedback (wr is
obtained by integration). Equation (10) models the fil-
ter applied during the digital acquisition in order to avoid
the aliasing in the frequency domain. The parameter τd

could also include the delay due to the feedback opera-
tions such as the real-time Fourier analysis, if this delay
is small in comparison with the TMs frequencies. We as-
sume that the m, n Fourier harmonics can be correctly eval-
uated, with the removal of the coils produced sidebands as
explained in Sect. 2. We will verify that this is indeed pos-
sible, which means that the sideband contribution to the
measurements is not too large, at the end of Sect. 5. Equa-
tion (11) for the reference current harmonics represents the
CMC law, here implemented as a standard proportional-
derivative (PD) controller: Km,n

p , Km,n
d are respectively the

proportional and derivative gains applied to the m, n mode.
Equation (12) is the discrete Fourier transform of the volt-
ages Vi, j applied to the coils, being Rc the resistance of
the coil. Equation (13) is the RL circuital equation of the
coils for the m, n current harmonics: lm,n, λm,n are effec-
tive inductances and areas respectively, whose explicit ex-
pressions are given in formulas (B.4), (B.5) of [11]. They
provide the time variation of the radial flux enclosed by
the coils. The inductances lm,n contain also the coils side-
bands contribution. This is the only expression in which
their effect is considered in this model: in fact, if M,N are
large enough the sidebands do not correspond to unstable
plasma modes and they are not expected to interact signif-
icantly with the TMs. The third term in the r.h.s of (13) is
retained for sake of completeness, since its contribution is
very small. Therefore the relationship between the refer-
ence and actual current harmonics, ensuing from (12, 13)
is a one-pole filter law within a good approximation:

τm,n
c dIm,n

DFT/dt+ Im,n
DFT ≈ Im,n

ref ; τm,n
c = lm,nNc/Rc. (14)

Note that the pole inherits the m, n dependence of lm,n.
In [11] a slightly different formulation was adopted: Equa-
tion (14) was assumed to hold exactly with τc = 0.5 ms,
regardless to the mode numbers m, n, as observed in RFX-
mod [17], and Eq. (13) was used to provide the voltages.
In fact, in RFX-mod the coils amplifiers have an inter-
nal feedback system which from the one hand reduces the
pole of (14), from the other hand introduces a fixed soft-
ware delay: the consequence is that relation (14) is veri-
fied with τc = 0.5 ms. In the present formulation we are
not considering such a supplementary feedback system for
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the coil amplifiers. In any case these are not important
details, since the pole τm,n

c can be compensated by taking
Km,n

d = τm,n
c Km,n

p , which the analysis [11] indicated as the
optimum choice for the derivative gain. In the computa-
tions shown in the next chapter the derivative gains are
fixed according to this rule. The system of equations is
closed providing the radial field at the resonant surface for
each mode: we evolve the phases ϕm,n, while the ampli-
tude are imposed, for example from the experimental esti-
mates [18]. In fact the Rutherford-like models [19], which
would provide equations for the amplitude evolution at the
resonant surfaces in the non-linear regime are valid in sin-
gle helicity conditions. Therefore, they are of uncertain
applicability in the RFP case, where the observed dynamic
involves the energy exchange between different TMs. The
phases are assumed to evolve with the no-slip condition
[1], according to which a tearing mode co-rotates with the
ion fluid at the resonant surface:

dϕm,n

dt
= −n Ωφ

(
rm,n, t

) − m Ωθ
(
rm,n, t

)
. (15)

4. Simulations
We take the fluid and equilibrium parameters from

the RFX-mod experiment whenever possible, and fix them
with sensible hypothesis in the absence of reliable de-
terminations. The same geometrical dimensions and ac-
tive coils grid of RFX-mod are assumed: a = 0.459 m,
R0 = 2 m, c = 0.5815 m, M = 4, N = 48, Nc = 60,
Rc = 0.8Ω. An important fluid parameter is the plasma
perpendicular viscosity. To our knowledge, the viscosity
in a RFP has been measured in MST only, perturbing the
plasma velocity profile by a biased electrode [20]. From
the flow damping, the perpendicular viscosity was inferred
to be anomalous with a value μ/ρ ≈ 50 m2/s, which is as-
sumed in these simulations. The imposed electron density
is the value ne = 3 × 1019m−3 of the high current shot
23810 (1.5 MA), taken as reference. The poloidal damp-
ing time in Eq. (7) is taken equal to the viscous diffusion
time: τD = τV = ρa2/μ. The momentum sources in
Eqs. (6), (7) are imposed in order to have, from the solution
of the model equations, velocity profiles compatible with
the RFX-mod measurements [21]. The fluid velocity is ini-
tialized to zero. The resistive shell is placed behind a non-
conductive first wall made by graphite tiles: rwi = 0.475 m
(in RFX-mod the shell is placed farther from the plasma
with respect to the simulation: rwi = 0.5125 m). Moreover
δw = 3 mm as in RFX-mod. We will show some simu-
lations examples considering the evolution of the m = 1,
n = −7 ∼ −19 modes non-linearly interacting with the
m = 0, n = 1 ∼ 12 modes. The amplitudes at the resonant
surfaces are imposed according to the values estimated in
the reference shot from the RFX-mod edge magnetic data
using a Newcomb’s equation solver [18]. Since we are con-
sidering a boundary different from the RFX-mod one, these
amplitudes must be taken only as indicative of a high cur-
rent RFP regime. These amplitudes are multiplied by an

Fig. 4 Simulation result for the m = 1, n = −7 TM. Black:
imposed amplitude at the resonant surface. Blue: merit
parameter for this mode.

exponential factor to ensure the vanishing at the starting
time of the simulation. The results of the analysis pre-
sented in [11] are summarized by the following points.
1) The transition from the high frequency rotation related
to the unperturbed fluid motion to a slower frequency ro-
tation is still present when the amplitude at the resonant
surface exceeds the wall-locking threshold.
2) The feedback changes the properties of the slower
branch, since the TMs frequencies remains significant and
the shell penetration by the radial field is avoided.
3) At constant resonant surface amplitude, the feedback
determines a true equilibrium condition, with uniform ro-
tations; no signs of instability are seen unless the gains are
increased too much.
4) The feedback does not fix the absolute value of the
edge radial field, rather the ratio between the radial field
at the plasma edge and at the resonant surface b̂m,n

a ≡∣∣∣bm,n
r (a)

/
bm,n

r (rm,n)
∣∣∣. We call this quantity the merit parame-

ter. This is clearly show in Fig. 4, considering a simulation
with rf = rwi and τw = 0.1 s. Despite the strong oscilla-
tions of the dominant mode amplitude at the resonant sur-
face (characteristic of the QSH dynamic) the relative merit
parameter remains almost constant.
5) Both b̂m,n

a and the power Pi, j = Ii, j×Vi, j/Nc requested by
the coils are reduced by increasing the shell time constant,
until a saturation at about τw ≈ 0.1 s is found; from the one
hand this means that the stabilization provided by the shell
is important even with the feedback; from the other hand
this implies that a thick shell with a very large τw is not
necessary, and that the RFP can work with a relatively thin
shell aided by the feedback coils
6) In the optimum range of τw and gains Km,n

p the values
of b̂m,n

a are slightly larger than those obtained with an ideal
shell in the place of the resistive one.
7) Moving the control radius from the inner shell surface
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Fig. 5 Single mode analysis of the merit parameter b̂m,n
a for the

m = 1, n = −7 TM. The black line represents the value
with an ideal shell in the place of the resistive one. Note
the logarithmic scale in the y-axis.

rf = rwi to the plasma edge rf = a does not improve the
feedback performances in terms of b̂m,n

a (they remain above
the ideal shell values), while it increases considerably the
power requested to the coils.

In all these analysis the parameter τd which enter in
the ‘acquisition’ Eq. (10) was set at the value τd = 0.1 ms.
In the following we will present some complementary
analysis, not published in [11], which consider a τd scan.
Figure 5 shows the results of several simulation performed
considering the m = 1 n = −7 TM only, assuming a con-
stant amplitude at the resonant surface. The control radius
is set at the plasma edge rf = a. The points represent the
b̂m,n

a values once the equilibrium condition is established.
For each of the nine combinations of τd, τw obtained with
τd = (0.01,0.1,1) ms and τw = (0.001,0.01,0.1) s a Km,n

p

scan is explored (the derivative gain is fixed by the con-
dition Km,n

d = τm,n
c Km,n

p ). Values τw > 0.1 s are not con-
sidered by virtue of the saturation effect mentioned at the
point 5). Within a good approximation the merit param-
eter turns out to be a function of the gain and the ratio
τd/τw. The values closest to the ideal shell one are ob-
tain for small τd/τw and intermediate Km,n

p . Raising the
gain to much can lead to unstable solutions, as occurs for
−Km,n

p a/(0.96π) = 72 and τd/τw ≥ 0.01, where in fact no
points are shown. The τd/τw dependence is confirmed in
the multi-mode simulations, with the ‘experimental’ im-
posed amplitudes at the resonant surfaces. In fact Fig. 6
shows a good agreement between the time-averaged b̂m,n

a

of two simulations having rf = a, the same gains Km,n
p , and

the same ratio τd/τw = 0.001 obtained with two different
combinations of τd, τw. The simulations are carried out
for 10 ms with the ‘experimental’ amplitudes at the reso-
nant surfaces taken in the interval [50, 60] ms (see black

Fig. 6 Average values of for b̂m,n
a the m = 1 TM in the multi-

mode simulations with rf = a and τd/τw = 0.001. The
black line represents the value with an ideal shell in the
place of the resistive one.

line of Fig. 4). Therefore, the increase of b̂m,n
a when reduc-

ing τw, obtained in [11] at fixed τd, can be compensated
by a proportional reduction of τd. Nevertheless the simu-
lation performed with the smallest τw is more demanding
for the coils power, as shown in Fig. 7 by comparing the
red and blue lines. The additional black line refers to a
simulation performed moving the control radius at the in-
ner surface of the shell rf = rwi: in this case the coils power
is reduced. The coils power dependence on τw and rf con-
firms the results of the previous analysis [11] mentioned at
the points 5) and 7). In the inductances lm,n of Eq. (13)
we have included the contribution of all the computable
sidebands harmonics, while in [11] only the leading orders
have been considered. This increases the computed volt-
ages and consequently the coils estimated power in Fig. 7
by a factor 2-3 with respect to the analogous curves plotted
in the figure 24 of [11].

As final analysis, we have verified the possibility of
performing a CMC with the adopted configuration of coils,
sensors and shell. This means that in the expression (2)
for the DFT harmonics the ‘clean’ contribution, related to
the Fourier modes m = 1, n = −7 ∼ −19 and m = 0,
n = 1 ∼ 12, must be at least comparable to the side-
band contribution. In fact if the latter were much larger
than the former, the cleaning of the measurements with
the sideband subtraction would be unfeasible, due to the
unavoidable errors and approximations introduced by this
procedure. Therefore in a post-processing of the simula-
tion with τw = 0.1 s and rf = rwi, the sidebands of the
m = 1, n = −7 ∼ −19 and m = 0, n = 1 ∼ 12 TMs have
been estimated from the coils currents using formulas (4,
5), and then added to the respective TMs harmonics ac-
cording to (2) to obtain an estimate of the measured DFT
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Fig. 7 Maximum of the coils power Pi, j = Ii, j × Vi, j/Nc as
function of time for several simulations The signals are
smoothed for clarity reasons.

harmonics. The ‘raw’ signals br
i, j are then given by the

inverse of (1). The ‘clean’ part of the signals is instead
obtained considering in the r.h.s of (2) the Fourier modes
m = 1, n = −7 ∼ −19, m = 0, n = 1 ∼ 12 only, and then
performing the same inverse transform of (1). Figure 8
compares the maximum of the 4×48 signals so obtained,
showing that the clean contribution is a significant frac-
tion of the total signal. The conclusion is that the CMC is
indeed possible with the adopted layout. This is not sur-
prising since this layout is similar to the RFX-mod one,
where the CMC is currently used. We argue that the rela-
tively large radial distance between sensors and coils (the
sidebands decrease faster than the lower m, n harmonics of
the TMs by increasing the distance from the coils) and the
screening effect of the shell (the sensors are assumed to be
placed on its inner surface) make the sideband contribu-
tion tolerable, despite the identical periodicity of sensors
and coils.

5. Concluding Remarks
Some new aspects of the CMC feedback on the dy-

namo tearing modes with the active coils placed outside
the vacuum vessel, assumed to be a uniform resistive shell,
have been discussed. These results complete the general
analysis presented in [11]. We have shown that the merit
parameter b̂m,n

a for the edge radial field control depends on
the gains and on the ratio τd/τw between the time con-
stants of the shell and of the filter necessary in the dig-
ital acquisition of the measured signals. Nonetheless τw

should be large enough (τw ≈ 0.1 s) to reduce the coils
power request, as already shown in [11]. The sidebands
contribution to the measured signals has been estimated:
for the assumed shell, sensors and coils layout (which is
similar to RFX-mod) it remains at a tolerable level. The
impossibility of reducing the merit parameter below the
value obtained with an ideal shell in the place of the re-

Fig. 8 Comparison of the raw and clean radial field measure-
ments computed in a post-processing of the simulation
with τw = 0.1 s and rf = rwi. The sensors coils are at
r = rwi. Here the maximum of the i = 1,..4, j = 1,..48
signals is plotted as function of time.

sistive one, at least with a PD controller, is confirmed. The
reason for this limitation is not easy to understand, since,
for example, some analyses performed with more complex
controller which cancels the non-linearities of the model
equations (feedback-linearization technique [22]) suggest
that, in the absence of delays, it is possible to make b̂m,n

a

close to zero. However, in these model-based controllers it
is difficult to include a realistic description of the shell (the
thin-shell dispersion relation was assumed in the place of
the more exact Eq. (8)) Moreover the inclusion in the sim-
ulations of the delays related to the acquisition and coils
amplifiers have shown to spoil the results. Perhaps it is
better to consider the problem using a simpler argument,
which from the one hand helps the intuition, form the other
hand suggests a different feedback configuration. The best
control of the edge radial field is realized when b̂m,n

a = 0, or
equivalently br(a) = 0, since in this case the plasma would
experience a ‘virtual’ ideal shell just at its boundary. If
br(a) = 0 the external electromagnetic torque applied to
the plasma is zero [11, 14], and TMs would rotate at fre-
quencies close to their natural unperturbed values (apart
a slight modification due to their mutual interaction [14]).
At these frequencies the screening effect of the shell would
make br(rwi) ≈ 0. Since Newcomb’s equation is a second
order differential equation in r, these two conditions would
imply the vanishing of the modes eigenfunctions, which is
impossible. Instead, since the Newcomb’s solution is in-
terrupted at the coils radius with a derivative discontinuity,
the two conditions br(a) = 0, and br(rwi) ≈ 0 are compati-
ble if the active coils are placed inside the vacuum vessel.
An analysis of such a configuration, still in progress, is
confirming this possibility.
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