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A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent transport in
magnetic confinement devices with non-axisymmetric configurations. Effects of the magnetic surface shapes in
three-dimensional equilibrium obtained from the VMEC code are accurately incorporated. Linear simulations of
ion temperature gradient (ITG) instabilities and zonal flows in the Large Helical Device (LHD) [O. Motojima,
N. Oyabu, A. Komori et al., Nucl. Fusion 43, 1674 (2003)] configuration are carried out by the GKV-X code as
benchmark tests against the GKV code [T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006)]. For high
poloidal wavenumbers, the frequency, growth rate, and mode structure of the ITG instability are influenced by
the VMEC geometrical data such as the metric tensor components of the Boozer coordinates, while the difference
between the zonal flow responses obtained by the GKV and GKV-X codes is found to be small in the core LHD
region.
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1. Introduction
Anomalous transport of particles, momentum, and

heat is commonly observed in fusion plasma experiments,
and has been a central issue in magnetic fusion research for
the last few decades. The anomalous transport is consid-
ered to be driven by the drift-wave plasma turbulence [1],
e.g., the ion temperature gradient (ITG) turbulence. The
zonal flows are known to play a critical role in regulat-
ing the turbulent transport in toroidal plasmas, and various
studies on the zonal flows have been conducted for toka-
maks and stellarator/heliotron configurations [2–4].

To explore the zonal flow and microturbulence in non-
axisymmetric configurations, a number of linear and non-
linear gyrokinetic simulations have been performed [5–9].
In our previous studies [6, 10], we investigated the effects
of single and multiple helicity magnetic field configura-
tions on the ITG turbulence in the helical system using
the gyrokinetic Vlasov flux-tube code, GKV [11]. The
simulation results indicate that a neoclassically optimized
(inward-shifted) helical configuration causes a reduction
in the ion heat transport through the enhancement of the
zonal flows as compared with that in the standard configu-
ration. This is also qualitatively consistent with the Large
Helical Device (LHD) [12] experimental results, which in-
dicate that the anomalous transport in the inward-shifted
cases is reduced with a decrease in the radial drift of ripple-
trapped particles [13], but with an increase in the unfavor-
able field line curvature [14].
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To understand anomalous transport physics better,
quantitative comparisons between the gyrokinetic simula-
tions and experiments are required. In the GKV simula-
tions, the model helical fields including limited number of
helical Fourier components are employed with the large
aspect ratio approximation to the field geometry, where
the Jacobian is assumed to be a constant on the flux sur-
face, and diagonal metric tensor components derived from
the cylindrical approximation are used. For more quantita-
tive gyrokinetic simulations, it is a natural path to furnish
a well-established gyrokinetic code with detailed geomet-
rical information obtained from three-dimensional equilib-
rium calculations as in Refs. [15–17]. Based on this mo-
tivation, we developed a new gyrokinetic Vlasov code,
GKV-X. The GKV-X code precisely deals with realistic
magnetic configurations, using all the geometrical infor-
mation provided by the VMEC code [18], which is a stan-
dard magnetohydrodynamic equilibrium solver for non-
axisymmetric systems. Using the GKV-X code, we inves-
tigate the effects of full geometry of the LHD plasmas on
the linear ITG mode and the zonal flow response [6,19–23]
by the benchmark tests against the GKV calculation.

The rest of this paper is organized as follows. In
Sec. 2, we summarize the field representation and geom-
etry in flux coordinate system. In Sec. 3, we describe basic
equations employed in the GKV and GKV-X codes, and
clarify the differences between the codes for concrete rep-
resentations of each term in the equations. In Sec. 4, sim-
ulation results of the linear ITG instability and the zonal
flow response are compared for both the codes to inves-
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tigate the effects of the metric tensor and the Jacobian in
helical systems. Section 5 presents the conclusions of the
study.

2. Magnetic Field Geometry
The detailed expressions of the magnetic field rep-

resentation and geometry in the flux coordinate system
are described here. We consider the flux coordinate sys-
tem {ρ, θ, ζ}, where θ and ζ are poloidal and toroidal an-
gles, respectively. The labeling index of the flux surfaces,
ρ ≡ √Ψ/Ψa, is a dimensionless quantity. Here Ψ repre-
sents the toroidal magnetic flux with the minor radius, r,
defined by Ψ = Baxr2/2, with a field strength at the mag-
netic axis, Bax, and Ψa is the value of the toroidal flux at
the last closed surface. Therefore, the flux label can be rep-
resented as ρ = r/a, where a denotes the minor radius of
the last closed surface defined by Ψa = Baxa2/2 at ρ = 1.

2.1 Field representation
Let us consider the Boozer coordinates [24] {ρ, θB, ζB}

as the flux coordinate system. The contravariant represen-
tation of the magnetic field in the Boozer coordinates, is
written as

B = ∇Ψ (ρ) × ∇θB + q−1(ρ)∇ζB × ∇Ψ (ρ)

=
Ψ ′√
gB

(
eζB + q−1(ρ)eθB

)

= BζB eζB + BθB eθB , (1)

Fig. 1 Example of contravariant components of metric tensor, used for k⊥ in Eq. (26), obtained by the VMEC/NEWBOZ outputted
configuration at ρ = 0.6 in the Boozer coordinate system {ρ, θB, ζB} with a fixed α = ζB − q0θB. Each component is in units of a−2.

where, eθB ≡ ∂r/∂θB, eζB ≡ ∂r/∂ζB, q(ρ) is the safety factor
and
√
gB is the Jacobian in the coordinate system,
√
gB = (∇ρ × ∇θB · ∇ζB)−1

=
Ψ ′

B2

(
BζB + q−1(ρ)BθB

)
, (2)

where the prime symbol represents the derivative with re-
spect to the flux label ρ, i.e., A′ = dA/dρ. Hereafter, for
the sake of simplicity, the subscript “B” of the poloidal and
toroidal angles is omitted when the angles are used as sub-
scripts of any variables, e.g., BθB is represented as Bθ. The
poloidal and toroidal covariant components of the field, Bθ
and Bζ , are flux functions in the Boozer coordinates and
consist of the covariant representation of the field written
as

B = Bρ∇ρ + Bθ∇θB + Bζ∇ζB. (3)

The components of the equilibrium field Bθ, Bζ , Bθ, and
Bζ are directly given by the VMEC code except for the
component Bρ. The radial covariant component, Bρ, can
be determined using the contravariant components,

Bρ = Bθgθρ + Bζgζρ. (4)

Here, gθρ and gζρ are the covariant components of the met-
ric tensor.

2.2 Metric components
Since the VMEC code uses the original coordinate

system, the “VMEC coordinates,” we need to convert the
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coordinates into the Boozer coordinates; thus, we use the
NEWBOZ code [25], which transforms coordinates from
the VMEC to the Boozer coordinates {ρ, θB, ζB} with the
radial flux label ρ. The VMEC/NEWBOZ code package
provides information about the shapes of the flux surfaces
defined in the cylindrical coordinates {R,Z, φ} as Fourier
series for θB and ζB,

R =
∑

k

Rk(ρ) cos(nkζB − mkθB), (5a)

Z =
∑

k

Zk(ρ) sin(nkζB − mkθB), (5b)

φ = ζB +
∑

k

φk(ρ) sin(nkζB − mkθB). (5c)

From Eq. (5), the covariant metric components can be ob-
tained as follows:

gi j =
∂R
∂i
∂R
∂ j
+
∂Z
∂i
∂Z
∂ j
+ R2 ∂φ

∂i
∂φ

∂ j
, (6)

where i, j = {ρ, θB, ζB}. Using Eqs. (1), (2) and (3), gθζ and
gζζ can also be represented as

gθζ =

√
gB

Ψ ′
Bθ − q−1(ρ)gθθ, (7a)

gζζ =

√
gB

Ψ ′
Bζ − q−1(ρ)gθζ , (7b)

which are useful for a consistency check on the calculation
of the metric tensor. We can obtain the contravariant metric
components from the covariant ones as given below:

gil =
1
gB

(
g jmgkn − g jngkm

)
, (8)

where {i, j, k} and {l,m, n} are even permutations of
{ρ, θB, ζB}. As an example, Fig. 1 shows the contravari-
ant components of the metric tensor in the standard LHD
equilibrium at the flux label ρ = 0.6, where gi j for i, j =
{ρ, θB, ζB}, calculated from the VMEC/NEWBOZ output,
are plotted along the field line.

3. GKV and GKV-X Codes
In this section, we present the gyrokinetic equation

employed in the GKV and GKV-X codes as well as con-
crete expressions of each term in which profiles along the
field line are compared for both the codes.

3.1 Basic equations
Let {r, θ, ζ} be a generalized flux coordinate system.

The local flux-tube model [26] with the field-aligned co-
ordinates {x, y, z} is used in the codes, where x = r − r0,
y = (r0/q0)

[
q(ρ)θ − ζ] and z = θ, with the safety factor

q0 at the minor radius r0 = ρ0a. The minor radius, r0, is
defined by the toroidal magnetic flux Ψ (r = r0) = Baxr2

0/2.
Both the codes solve the electrostatic gyrokinetic equa-
tion of the perturbed ion gyrocenter distribution function
δ f [11, 27],

∂δ f
∂t
+ v||b · ∇δ f +

c
B0

b × ∇Φ · ∇δ f

+ ud · ∇δ f − μ
mi

b · ∇B
∂δ f
∂v||

=
(
u∗ − ud − v||b) · e∇Φ

Ti
FM +C(δ f ), (9)

where b = B/B is the unit vector parallel to the magnetic
field, and v|| and μ = miv

2⊥/2B, regarded as the velocity-
space coordinates in the codes, denote the parallel velocity
and magnetic moment, respectively. The Maxwellian dis-
tribution with temperature Ti and the collision term are de-
noted by FM and C(δ f ), respectively. The magnetic drift
velocity is ud = (c/eB)b × (μ∇B + miv

2
‖ b · ∇b) and the

diamagnetic drift velocity is u∗ = (cTi/eB)b × [∇ ln n +
(miv

2/2Ti − 3/2)∇ ln Ti]. The perpendicular wavenumber
vector is defined by

k⊥ = kx∇r + ky∇
[

r0

q0
(q(r)θ − ζ)

]
. (10)

In the wavenumber space, (kx, ky), the average elec-
trostatic potential at the gyrocenter, Φ, is related to
the electrostatic potential at the particle position, φ, as
Φkx,ky = J0(k⊥v⊥/Ωi)φkx,ky . The zeroth-order Bessel func-
tion, J0(k⊥v⊥/Ωi), represents the finite gyroradius effect,
where the ion gyro frequency is defined by Ωi = eB/mic.
The electrostatic potential φkx,ky is calculated from the
quasi-neutrality condition∫

d3vJ0δ fkx,ky − n0
eφkx,ky

Ti
[1 − Γ0(b)] = ne,kx,ky ,

(11)

where δ fkx,ky is the Fourier component of δ f , Γ0(b) =
ebI0(b), with b = (k⊥vti/Ωi)2, and I0 is the modified zeroth-
order Bessel function. The ion thermal speed is defined by
vti =

√
Ti/mi. The electron density perturbation, ne,kx,ky , is

assumed to be adiabatic and is given in terms of the elec-
tron temperature, Te, and the averaged density, n0, as

ne,kx,ky

n0
=

⎧⎪⎪⎨⎪⎪⎩ e
[
φkx,ky − 〈φkx,ky〉

]
/Te if ky = 0,

eφkx,ky/Te if ky � 0.
(12)

Also, 〈· · · 〉 indicates the flux surface average defined as

〈A(z)〉 =
∫ ∞

−∞
√
gFA(z)dz

/ ∫ ∞

−∞
√
gFdz, (13)

for an arbitrary function of z, A(z). Here,
√
gF is the Ja-

cobian in the coordinate system {x, y, z}, which is related
to the Jacobian in the Boozer coordinates, as shown in
Eq. (2):

√
gF =

q0

ar0

√
gB. (14)

We adopt the modified periodic boundary condition at the
boundaries of the flux-tube domain [26]. In linear and
collisionless case, the Fourier transformed expression of
Eq. (9) becomes(

∂

∂t
+ v‖b · ∇ − μmi

b · ∇B
∂

∂v‖
+ iωDi

)
δ fkx,ky
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= FM(−v‖b · ∇ − iωDi + iω∗T i)J0(k⊥ρi)
eφkx,ky

Ti
, (15)

where ωDi = k⊥ · ud and ω∗T i = k⊥ · u∗ are the magnetic
and diamagnetic drift frequencies, respectively, and the ion
gyroradius is defined by ρi = v⊥/Ωi.

3.2 Geometrical expressions used in GKV
In the GKV simulations for helical configurations

such as the LHD, we employed a model field configura-
tion,

B = B0

⎡⎢⎢⎢⎢⎢⎢⎣1 − ε00(r) − εt(r) cos θ −
L+1∑

l=L−1

εl(r) cos
[
lθ − Mζ

]⎤⎥⎥⎥⎥⎥⎥⎦ ,
(16)

which includes the toroidal εt, the main helicity εh = εL,
and two side-band helical components ε+ = εL+1 and
ε− = εL−1. Here, M and L indicate the main period num-
bers of the confinement field in the toroidal and poloidal
directions, respectively. For the LHD, L = 2 and M = 10.
Here, we regard the poloidal angle θ as a coordinate along
the field line labeled by α = ζ − q0θ = constant. In the
GKV code, we use the large aspect ratio approximation for
the confinement field geometry assuming the presence of
small helical ripples and cylindrical diagonal metric ten-
sor [7, 8]. Under the approximation, in terms of the field-
aligned coordinates {x, y, z}, the magnetic drift frequency
on the right-hand side of Eq. (15) is given by

ωDi = −c
e

(
μ +

1
B

miv
2
‖

)
εt
r0

⎡⎢⎢⎢⎢⎢⎢⎣ky
⎛⎜⎜⎜⎜⎜⎜⎝ρ0ε

′
00

εt
+
ρ0ε
′
t

εt
cos z

+

L+1∑
l=L−1

ρ0ε
′
l

εt
cos[(l − Mq0)z − Mα]

⎞⎟⎟⎟⎟⎟⎟⎠

+
(
kx+ ŝzky

) ⎛⎜⎜⎜⎜⎜⎜⎝sin z+
L+1∑

l=L−1

l
εl
εt

sin[(l−Mq0)z−Mα]

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ,

(17)

using Eq. (16) for a fixed α. Here, ŝ = (r0/q0)dq/dr =
(ρ0/q0)q′ is the magnetic shear parameter and is assumed
to be constant, and ε′ = dε/dρ = a(dε(r)/dr). The diamag-
netic drift frequency is expressed as

ω∗T i = − cTi

eB0Ln
ky

[
1 + ηi

(
miv

2

2Ti
− 3

2

)]
, (18)

where ηi = Ln/LT with the background gradients for
density L−1

n = −d ln n/dr, and for temperature L−1
T =

−d ln Ti/dr. The perpendicular wavenumber k⊥ is written
as

k2
⊥ =

(
kx + ŝzky

)2
+ k2
y, (19)

which is used for the zeroth-order Bessel function in
Eq. (15) and the zeroth-order modified Bessel function in
Eq. (11). The parallel derivative in Eq. (15) is given by

b · ∇ = 1
R0q0

∂

∂z
, (20)

where the safety factor, q0, and the major radius, R0, are re-
garded as constant. This corresponds to the approximation
that the Jacobian is expressed as

√
gF ∝ 1/(B · ∇θ) ∝ 1/B,

i.e., B
√
gF is a constant on the flux surface. This im-

plies that the coordinates in this model do not coincide
exactly with the Boozer coordinates. In the large aspect
ratio approximation, however, the difference is negligible.
The flux surface average for the arbitrary function, A(z), in
Eq. (13) reduces to

〈A(z)〉 =
∫ ∞

−∞
A(z)dz/B

/ ∫ ∞

−∞
dz/B, (21)

which guarantees the property 〈B · ∇A〉 = 0. According
to the approximation, the parallel derivative of B, which
is employed for the mirror force term in Eq. (15), can be
written as

b · ∇B

=
B0εt
R0q0

⎛⎜⎜⎜⎜⎜⎜⎝sin z +
L+1∑

l=L−1

(l − Mq0)
εl
εt

sin[(l − Mq0)z − Mα]

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(22)

with the constant field line label α.

3.3 Geometrical expressions used in GKV-X
In the GKV-X code, we employ the same basic equa-

tions as that in the GKV code, i.e., Eqs. (9) and (11),
but using the confinement field model obtained by the
VMEC/NEWBOZ code package that gives an output of the
confinement field strength in terms of the Fourier series in
the Boozer coordinate system {ρ, θB, ζB} as follows:

B =
nmax∑
n=0

B0,n(ρ) cos nζB

+

mmax∑
m=1

nmax∑
n=−nmax

Bm,n(ρ) cos[mθB − nζB], (23)

where Bm,n(ρ) is the Fourier component with the poloidal
(m) and toroidal (n) mode numbers. Here, mmax and
nmax are the maximum mode numbers for the poloidal and
toroidal directions used in the VMEC calculation, respec-
tively. Furthermore, in the GKV-X, we implement exact
representations of each term in Eq. (9) with full geometri-
cal factors, the Jacobian and the metric tensor. In the coor-
dinates {ρ, θB, ζB}, the magnetic drift frequency in Eq. (15)
with zero-beta, b · ∇b = (∇⊥B)/B, is given by

ωDi = − c
eB2

a√
gB

(
μ +

1
B

miv
2
‖

) [
ky

[(
ρ0

q0
Bρ + ŝθBBζ

)
∂B
∂θB

+
(
ρ0Bρ − ŝθBBθ

) ∂B
∂ζB
−

(
ρ0

q0
Bθ + ρ0Bζ

)
∂B
∂ρ

]

+ kx

[
Bζ
∂B
∂θB
− Bθ

∂B
∂ζB

]]
, (24)

with the perpendicular wavenumbers, kx and ky, where the
field-aligned coordinates {x, y, z}, for the GKV-X case are
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Fig. 2 Profiles of (a) normalized magnetic field strength B/B0, (b) magnetic drift frequency ωDi normalized by vtiL−1
n , (c) mirror force

term normalized by v2tiL
−1
n , and (d) square of the normalized perpendicular wavenumber, k⊥ρi. All profiles are evaluated at ρ = 0.6,

and three plots except for (a) are calculated for kxρi = 0 and kyρi = 0.324. In (b) and (c), the magnetic moment is μ/(miΩiB−1) =
0.50 vtiLn. Black and red curves show the results of the GKV and GKV-X codes, respectively.

defined later. The diamagnetic drift frequency can also be
expressed as

ω∗T i = − cTi

eLn

ρ0a2

q0B2 √gB

(
Bθ + q0Bζ

)
ky

[
1 + ηi

(
miv

2

2Ti
− 3

2

)]

= − cTi

eLn

ρ0a2

Ψ ′
ky

[
1 + ηi

(
miv

2

2Ti
− 3

2

)]
, (25)

where we use Eq. (2) in the last line. Using the identity for
the contravariant components of the metric tensor (Eq. (8)),
we can obtain the perpendicular wavenumber k⊥ as fol-
lows:

k2
⊥ = k2

xa2gρρ + 2kxkya
2

[
ŝθBg

ρρ +
ρ0

q0

(
q0g
ρθ − gρζ

)]

+ k2
ya

2

⎡⎢⎢⎢⎢⎣ρ
2
0

q2
0

(
gζζ + q2

0g
θθ − 2q0g

θζ
)

+ 2ŝθB
ρ0

q0

(
q0g
ρθ − gρζ

)
+ ŝ2θ2Bg

ρρ

]
. (26)

The parallel derivative is given as

b · ∇ = Ψ ′

q0B
√
gB

(
∂

∂θB
+ q0

∂

∂ζB

)
, (27)

with the Jacobian Eq. (2). Therefore, in the GKV-X code,
we use Eq. (13) as the flux surface averaging, and the par-
allel derivative of B can be represented as

b · ∇B

=
Ψ ′

q0B
√
gB

mmax∑
m=1

nmax∑
n=nmax

Bm,n(ρ)(m − nq0) sin[nζB − mθB].

(28)

For the benefit of comparing the magnetic drift frequencies
(Eqs. (17) and (24)), we write down the concrete forms of
the derivatives of the field strength along each direction in
the coordinates {ρ, θB, ζB} as follows:

∂B
∂ρ
=

nmax∑
n=0

B′0,n(ρ) cos nζB

+

mmax∑
m=1

nmax∑
n=−nmax

B′m,n(ρ) cos[mθB − nζB], (29a)

∂B
∂θB
= −

mmax∑
m=1

nmax∑
n=−nmax

Bm,n(ρ) m sin[mθB−nζB], (29b)

∂B
∂ζB
= −

nmax∑
n=0

B0,n(ρ) n sin nζB

+

mmax∑
m=1

nmax∑
n=−nmax

Bm,n(ρ) n sin[mθB − nζB]. (29c)

In the GKV-X code, we use the above mentioned terms
after converting the coordinates into the field-aligned co-
ordinates {x, y, z} with the relations, x = a(ρ − ρ0), y =
(aρ0/q0)(qθB − ζB), and z = θB in a constant field line la-
bel α = ζB − q0θB. The parallel derivative in Eq. (27), for
example, is written as b · ∇ = (Ψ ′/q0B

√
gB)(∂/∂z). The

concrete profiles of each term in Eq. (15), which are used
in the GKV and GKV-X simulations, are shown in Fig. 2.
The profiles are discussed in detail in the following section.

4. Comparison of Simulation Results
To investigate the effects of non-axisymmetric geome-

try on the ITG modes and zonal flows, gyrokinetic Vlasov
simulations using linearized versions of the GKV-X and
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Table 1 Parameters at flux surface ρ = 0.6 employed in the GKV
code. The prime symbol indicates A′ = dA/dρ.

q0 r0/R0 εt εh/εt ε−/εt ε+/εt
1.9 0.0907 0.0878 0.9113 -0.2806 0.0498

ŝ ρ0ε
′
00/εt ρ0ε

′
t /εt ρ0ε

′
h/εt ρ0ε

′−/εt ρ0ε
′
+/εt

-0.87501 0.1997 1.006 1.9486 -0.6452 0.070

GKV codes are performed in a way similar to that in
Refs. [7] and [11]. Here, we use the magnetic configura-
tion with the parameters of the confinement field based on
the VMEC calculation results for the standard LHD case,
which is similar to the “S-B case” in Ref. [8]. In the GKV-
X simulation, we use the VMEC configuration with full
helical components. On the other hand, the GKV calcu-
lation uses the parameters summarized in Table 1, which
are obtained from the VMEC configuration in terms of
the toroidal, main helical, two side-band components, and
their radial derivatives. In both the calculations, we use
the same parameters for the variables, ηi = 3, Te/Ti = 1,
Ln/R0 = 0.3, q0 = 1.9, ŝ = −0.87501, and α = 0.

4.1 Effects of full geometry
To highlight the differences in the effects of the metric

tensor, Jacobian, and full Fourier components of the con-
finement field between the two models, we plot profiles of
each term in Eq. (15), concrete expressions of which were
described in the previous section. In Fig. 2, we plot the nor-
malized field strength; the magnetic drift frequency, ωDi,
normalized by vtiL−1

n ; the mirror force term, (μ/mi)b · ∇B,
normalized by v2tiL

−1
n ; and the square of the normalized

perpendicular wavenumber, k⊥ρi, as functions of the field-
aligned coordinate z at ρ = 0.6. Here, to normalize the field
strength, we use B0,0(ρ) as the normalization factor B0. As
seen in the figures, the profiles of the field strength, mag-
netic drift frequency, and mirror force term for the GKV-X
and GKV codes appear similar to each other. However,
in the region near z = 0, where the ITG instabilities are
stronger because of more unfavorable magnetic field line
curvature, a difference in the magnitude of the magnetic
drift frequencies is not negligible and in fact, causes a dif-
ference in the ITG-mode growth rates. For the diamag-
netic drift frequency given in Eqs. (18) and (25), we ob-
serve that there is only a small difference by the factor of
ω(GKV)
∗T i /ω

(GKV-X)
∗T i = Ψ′/(a2ρ0B0) � 1.0097. The profiles of

the perpendicular wavenumber show a clear difference due
to the effects of the helical ripples on the metric tensor.
In the following simulations for the linear ITG modes and
collisionless damping of the zonal flows, we obtain the re-
sults at ρ = 0.6, which is in the core plasma region of the
LHD.

4.2 Linear ITG instability
Figure 3 shows the growth rates and real frequencies

Fig. 3 Growth rates γ (top) and real frequencies ωr (bottom)
of the linear ITG mode, as functions of the normal-
ized poloidal wavenumber, kyρi, for the GKV simulation
(black dashed lines with circles) and the GKV-X simula-
tion (red solid lines with triangles).

of the linear ITG instability, obtained from the GKV-X and
GKV simulations for ρ = 0.6, as functions of the normal-
ized poloidal wavenumber, kyρi, where kx = 0 is used. The
growth rate in the GKV-X calculation, compared to that in
the GKV, is slightly higher for kyρi <∼ 0.3 and lower for
kyρi >∼ 0.3. The real frequency obtained by the GKV-X
simulation is slightly more negative than that by the GKV
simulation. The differences between the codes are magni-
fied with the increasing poloidal wavenumber, which orig-
inates from the ripple components and full metric tensor
through the magnetic drift frequency (ωDi) and perpendic-
ular wavenumber (k⊥), respectively. Because more helical
ripple components are included in the magnetic drift fre-
quency for the GKV-X case, the difference of ωDi appears
as shown in Fig. 2-(b); that is, ωDi for the GKV-X is more
negative than for the GKV around z � 0, where the ITG
instabilities are strongly driven by unfavorable magnetic
field line curvature. According to Eq. (24), the difference
inωDi is enhanced in the large |ky| region. In the expression
of the perpendicular wavenumber (Eq. (26)), the terms in-
cluding the metric tensor components gθθ and gρρ, which
reflect the shape of the elliptic magnetic surface, are influ-
ential in k⊥ related to the finite gyroradius effect. The term
with gθθ remains finite around z � 0, and the contribu-
tion of the term to k⊥ is also enhanced for higher poloidal
wavenumbers, while the term with gρρ vanishes at z = 0.
In the other terms of Eq. (15), i.e., the diamagnetic drift
frequency and the mirror force term, the differences be-
tween the codes are much smaller than those in ωDi and
k⊥. Therefore, at large poloidal wavenumbers, the helical
ripple components of the confinement field and the met-
ric tensor of the magnetic surface affect the frequency and
the growth rate of the ITG instability through the magnetic
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Fig. 4 Eigenfunctions of electrostatic potential φk = φr + iφi

along the parallel-to-field coordinate z for linear ITG
modes for kyρi = 0.324 (top) and kyρi = 0.649 (bottom)
at kx = 0. Real and imaginary parts of the eigenfunctions
are plotted by solid and dashed curves, respectively. Red
and black curves express the results of the GKV-X and
GKV codes, respectively.

drift frequency and the finite gyroradius effect.
Eigenfunctions of the ITG modes are also investigated

(Fig. 4) for kyρi = 0.324 and kyρi = 0.649. As seen in the
plot for kyρi = 0.324, the mode structures of φk obtained
by the two codes have a similar profile, which is accompa-
nied by oscillations associated with the helical ripples. In
contrast, the field-aligned profiles of φk for larger poloidal
wavenumber kyρi = 0.649 show different ripple structures
in the unfavorable curvature region around z � 0. This is
consistent with the results of the growth rate and the real
frequency shown in Fig. 3, where the differences are found
mainly in the higher poloidal wavenumbers. Linear eigen-
value analysis [28–30] also predicts a similar mode struc-
ture to the present results.

4.3 Zonal flow evolution
The zonal flows are produced by an electrostatic field

perturbation varying in the radial direction and have the
poloidal wavenumber ky = 0. Hence, the perpendicular
wavenumbers in Eqs. (19) and (26) are simply given by

k2
⊥ =

{
k2

x for GKV,
k2

xa2gρρ for GKV-X.
(30)

Figure 5 shows the time evolution of the flux surface aver-
aged zonal flow potential 〈φk⊥〉 during its linear collision-
less damping found in the GKV and GKV-X simulations.
The results are shown for two different radial wavenum-
bers, kxρi = 0.0637 and kxρi = 0.1274. As observed in the
plots, the response functions of the zonal flows to the ini-
tial perturbation, 〈φk⊥(t)〉/〈φk⊥(0)〉 given by the two codes
agree well with each other for both kx values. The resid-
ual levels of the zonal flow potentials at t/(Ln/vti) = 100

Fig. 5 Linear response of the zonal flow potential to the initial
perturbation 〈φk⊥ (t)/φk⊥ (0)〉 for the GKV simulation with
model field (black dashed curves) and GKV-X simula-
tion with VMEC field configuration (red solid curves).
Here, the radial wavenumbers are kxρi = 0.0637 (top)
and kxρi = 0.1274 (bottom) for both codes.

are obtained as KGKV-X = (1.33 ± 0.81) × 10−2, KGKV =

(1.32 ± 0.79) × 10−2 for kxρi = 0.0637, and KGKV-X =

(3.54±0.15)×10−2,KGKV = (3.36±0.10)×10−2 for kxρi =

0.1274. Thus, the effect of the metric tensor on the resid-
ual zonal flow levels is very weak. We consider that this
is because the ripple effect of the perpendicular wavenum-
ber given in Eq. (30) for the GKV-X case with gρρ, which
is plotted in Fig. 1, is blinded with taking the flux surface
average to determine the residual zonal flow potential that
loses the poloidal-angle-dependent components associated
with the geodesic acoustic mode (GAM) oscillations. Re-
garding the short-time response of the zonal flow poten-
tial, the finite gyroradius effects (due to k⊥ρi) on the fre-
quency and the damping rate of the GAM are weaker than
the effects of the Fourier spectrum of the confinement field
strength, as theoretically shown in Ref. [31]. In the present
paper, the difference between the field strength structures
used in the GKV and GKV-X calculations is negligible as
seen in Fig. 2-(a). Therefore, the behaviors of the zonal
flow response shown by both the codes have only slight
differences.

5. Conclusions
In this paper, we report the development of the GKV-

X code, which is applicable to non-axisymmetric config-
uration such as the LHD. This code is designed to accu-
rately deal with the effects of complicated geometry and
helical ripple components of the confinement field, while
the original GKV code uses the model confinement field
for the geometry based on the large aspect ratio approx-
imation. The new code includes full information about
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the metric tensor, Jacobian, and Fourier components of the
helical field obtained from the VMEC equilibrium calcu-
lation. We performed the benchmark test of the GKV-X
against the GKV calculations in the core plasma region
of the standard LHD configuration. In the simulations of
the linear ITG instability, we have found that the effects of
full geometry and helical ripples are enhanced for higher
poloidal wavenumbers due to the finite gyroradius effect
and the magnetic drift frequency. The collisionless damp-
ing of the zonal flow potential is also examined, where the
geometrical effects on the zonal flow show little difference
between both codes. Thus, we can conclude that the GKV
calculation with model helical field is useful especially for
the phenomena with long wavelengths in the standard LHD
configuration, with relatively small helical ripple compo-
nents. However, we should note that the above mentioned
benchmark tests are conducted for a core plasma region at
ρ = 0.6, where the GKV simulations can be relatively ap-
propriate for the investigation of the ITG modes and zonal
flows. Therefore, the GKV-X code can be a powerful tool
for examining the effects of the full geometry and helical
ripples on the ITG modes and the zonal flows if we ex-
tend the simulation region to the edge region of the LHD
plasmas where the geometrical effects are expected to ap-
pear more remarkably. This is attributed to the strongly
distorted magnetic surfaces and more complicated helical
ripple components that exist in the edge region.

The gyrokinetic simulation including the full effects
of the complicated three-dimensional magnetic field is use-
ful for quantitative investigation of the ITG modes and
zonal flows in the helical systems. The GKV-X code en-
ables us to study the ITG modes and zonal flows in vari-
ous types of field configurations, and to make comparisons
with the experimental data, the results of which will be re-
ported elsewhere.
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