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In this paper, the Weibel instability, driven by the plasma temperature anisotropy, in the corona of high
intense laser fusion plasma is studied. The unperturbed electronic distribution function, f , of the anisotropic
corona is supposed to be a bi-Maxwellian. That T‖ = T⊥ ± WO, where WO =

1
4 mev

2
O is the averaged electron

quiver energy in the laser electric field. The first and the second anisotropies of f projected on the Legendre
polynomials are calculated as a function of the scaling parameter, WO

T⊥ . The Weibel instability parameters are
explicitly calculated as a function of the scaling parameter. For typical parameters of the laser pulse and the
fusion plasma, it has been shown that very unstable Weibel modes, γ � 1011 s−1, can be excited in the corona.
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1. Introduction
Erich Weibel [1] was the first who predicted the

spontaneously growing of the transverse quasi-static elec-
tromagnetic waves which appear in plasma, due to an
anisotropic velocity distribution of electrons. The maxi-
mum increment of this instability for the wave frequency
ω is γ = Im(ω) = u

cωp, where ωp is the plasma frequency
and u is the average velocity of electrons in the anisotropic
direction. This simple result is valid under the condition of
a strong anisotropy of the velocity distribution and small
wavelengths electromagnetic waves (kc � ωp, where k is
the wave number). This velocity anisotropy can be inter-
preted, in macroscopic level, as anisotropy in the plasma
temperature.

The Weibel instability is intensively studied for both
the astrophysical plasma [2] and the fusion plasma [3–7].
In the laser fusion plasma, several mechanisms contribute
to the excitation of the Weibel instability; namely the
temperature gradient, the plasma expansion, the inverse
bremsstrahlung. . . etc.

In the inertial confinement fusion (ICF) targets, pro-
duced by an intense laser pulse, the incident laser wave
[8–10] produces anisotropy in the formed plasma tempera-
ture. This is due to the fact that the plasma is preferentially
heated in the direction of the laser wave electric field. It
has been shown that this anisotropic distribution provokes
unstable Weibel electromagnetic modes [3–7]. If this in-
stability is excited, strong (giga gauss) magnetic fields can
be generated from the magnetic fields germ due to the elec-
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tron thermal motion.
In the laser fusion experiments, the Weibel instabil-

ity inhibits the heat flux and influences negatively on the
implosion characteristics of the target. This may have a
possibility to give rise to energy loss.

This paper deals with the theoretical study of the
Weibel instability excited in the laser fusion plasma
corona. In our model the unstable Weibel modes are ex-
cited by the direct effect of the laser electric field on the
coronal plasma. That the corona is characterized by a
plasma frequency, ωp, less than the laser wave frequency,
ωL: ωp < ωL.

The present work is organized as follows: in Sec. 2,
we present the electronic distribution function which is
supposed to be a local bi-Maxwellian. In Sec. 3, we present
a theoretical analysis of the Weibel modes. The Sec. 4 is
devoted to the scaling laws for the instability parameters.
Finally, a conclusion for the obtained results is given.

2. Distribution Function
In our model, the electronic distribution function, f , is

assumed to be a local bi-Maxwellian, where the anisotropy
in electron temperature is due to the direct effect of the
laser electric field on the corona electrons. This is justified
by the fact that the plasma is preferentially heated in the
direction of the laser electric field, so:

f =
(me

2π

)3/2 ne

T⊥T 1/2
‖

exp

(
−1

2
mev

2⊥
T⊥

)
exp

⎛⎜⎜⎜⎜⎜⎝−1
2

mev
2
‖

T‖

⎞⎟⎟⎟⎟⎟⎠ , (1)

where e, me, T‖ and T⊥ are respectively the elementary
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electric charge, the electron mass, the electron density, the
electron temperature in the anisotropy direction and the
electron temperature in the perpendicular plane.

In the case of the linear polarized laser pulse, with the
laser wave electric field oriented in the parallel direction,
the temperature anisotropy is given by: ΔT = T‖ − T⊥ =
WO, where WO is the average, on the laser cycle, of the os-
cillating energy communicated to the electron by the laser
wave. In this case, the parallel Weibel mode, k = k‖, is
excited. However, in the case of circularly polarized laser
wave, with the laser wave electric field oscillating in the
perpendicular plane, the temperature anisotropy is given
by: ΔT = T⊥ − T‖ = WO. In this case, the perpendicular
Weibel mode, k = k⊥, is excited.

The average electron quiver energy, WO, in both polar-
ization cases, represents the anisotropy in the electron tem-
perature. It is calculated using the perturbed fluid electron
motion equation by considering the collisions [11–13], so:

∂vo
∂t
= − e

me
E − vcvo,

where vo, E and vc are respectively the electron quiver ve-
locity, the laser electric field magnitude and the collision
frequency.

Not that in the above equation, the force due to pres-
sure gradient is dropped because it vanishes at the first or-
der in the case of plasma perturbed by an electromagnetic
wave. This is justified by the fact that the electromagnetic
perturbation has no effect on the electron density. Also,
the temporal variation of the perturbed quantities follows
the temporal variation of the laser electric field which is
assumed as a normal mode, E ∼ exp(iωLt). Therefore,
the average electron quiver energy on a laser wave cycle,
WO =

1
4 me|vo|2, can be presented as:

WO =
e2

2ε0cme

I

ω2
L

⎡⎢⎢⎢⎢⎢⎣1 −
(
vc
ωL

)2⎤⎥⎥⎥⎥⎥⎦ , (2)

where ε0, c and I = 1
2 cε0|E|2 are the vacuum electric per-

mittivity, the speed of light in vacuum and the local laser
pulse intensity respectively.

Equation (2) shows that WO decreases as the collision
frequency increases. This is interpreted by the fact that
the electron temperature undergoes an isotropisation due
to collisions. Then, we expect that collisions decrease the
Weibel instability growth rate (Sec. 3).

The collision frequency, vc ∼ ne/(T )3/2, corresponds
to the electron-ion collision frequency according to the
Lorentz approximation, that is justified in the laser fusion
plasma corona, where ne is the electron density and T is
the electron temperature:

T =
∫ ∞

0

(me

2
v2

)
f d3�v

/ ∫ ∞

0
f d3�v

It is necessary to calculate the three first components
of the unperturbed electron distribution function, truncated

on the Legendre polynomials that the Weibel instability
parameters depend on these functions (Sec. 3). We de-
velop the bi-Maxwellian electronic distribution function
(Eq. (1)) on the Legendre polynomials [14], Pl

(
μ =

v‖
v

)
:

f =
∑∞

0 Pl(μ) fl(v). Hence, the isotropic distribution func-
tion, f0, the first anisotropic function, f1, and the second
anisotropic function, f2, are calculated as:

f0 =

(
me

2πT⊥

)3/2

ne exp(−y)

×
{
(1 + W̃O)−1/2 +

y

3
W̃O(1 + W̃O)−3/2

}
, (3)

f1 = 0, (4)

f2 =

(
me

2πT⊥

)3/2

ne exp(−y)
{

2y
3

W̃O(1 + W̃O)−1/2

}
,

(5)

where y = mev
2

2T⊥ and W̃O =
WO
T⊥ . The scaling parameter W̃O

measures the direct effect of the laser pulse on the elec-
trons. In the same time it measures the anisotropy in tem-
perature which is the source of the Weibel instability.

We have presented, on the Fig. 1, the plot of f0(y) and
f2(y) for several values of W̃O.

We point out from these that the higher components of
unperturbed distribution became important as the scaling
parameter increases.

3. Weibel Instability Analysis
The Weibel instability is a micro-instability which

needs a kinetic analysis. However, the analytical estab-
lishment of a dispersion relation, which takes into account
the collisions, from the perturbed Fokker-Planck equation
is difficult. This is due principally to the nonlinearity of the
collisions term.

Several approaches to the Weibel dispersion relation
in the laser created plasma are reported in the literature.
For example, in Ref. [4], Wallace and Epperlein have es-
tablished a dispersion relation from the perturbed Fokker-
Planck equation in the collisional limit, where the wave-
length of the excited Weibel mode is greater than the main
free path of electron. However, in the Ref. [5] Ramani and
Laval have established a dispersion relation valid in the
collisionless limit. We found that the growth rate value
calculated by using the dispersion relation of Ref. [4] is re-
duced compared to that calculated by using the dispersion
relation of the Ref. [5]. This is in agreement with the pre-
diction of the Ref. [15].

In the Ref. [16], a dispersion relation, in the semicol-
lisional regime, is established. This dispersion relation is
derived in the Lorentz gas and in the local approximations.
It is valid in the whole collisionality regime. The group ve-
locity and the growth rate of the k Weibel mode are given
by:

vg(k) =

⎡⎢⎢⎢⎢⎣
√

3
2
vt

∫ ∞

0
y5/2F(y, kλ) f1dy

⎤⎥⎥⎥⎥⎦ /
D (6)
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(a) (b)

Fig. 1 (a) Isotropic distribution function, f0, as function of y for several values of the scaling parameter, W̃O. The dotted curve corresponds
to W̃O = 0.1, the dashed curve corresponds to W̃O = 0.2 and the solid one corresponds to W̃O = 0.3.

(b) Second anisotropic distribution function, f2, as function of y for several values of the scaling parameter, W̃O. The dotted curve
corresponds to W̃O = 0.1, the dashed curve corresponds to W̃O = 0.2 and the solid one corresponds to W̃O = 0.3.

and

γ(k) =

⎡⎢⎢⎢⎢⎣ 3
64π

ne

λv2t

c2

ω2
p

k2

+p
3
√

25

5
λvtk

2
∫ ∞

0
y9/4G(y, kλ) f2dy

⎤⎥⎥⎥⎥⎥⎦ /
D, (7)

where D =
∫ ∞

0
y3F(y, kλ) ∂ f0

∂y
dy and vt =

√
T/me is the

electron thermal velocity.
The functions F and G are calculated with a precision

better than 5% using numerical fits of the continued frac-
tions [16], so:

F =

⎡⎢⎢⎢⎢⎢⎣
(
1 +

(
α

δ

)2
)−1/2⎤⎥⎥⎥⎥⎥⎦ /

2

and

G = 2(1 + α2θ)/[3(1 + α2β)(1 + 2F)],

where α = 8kλy2, δ = 3π/2, θ = 30β/δ2 and β =(
5δ2252 − 3/4

) /
(δ2 − 30).

p = −1 for the linearly laser polarized laser pulse and
p = +2 for the circularly laser polarized pulse. The first
term in the right hand side of the Eq. (7) corresponds to the
attenuation of the wave and the second term corresponds
to the Weibel source.

The growth rate of the most unstable Weibel mode and
its group velocity are computed from this relation as:

γmax =
215/4

33/2
√
π

v5/2t√
ne

ωp

c

[∫ ∞
0

√
y f2dy

]3/2

∫ ∞
0

f0dy
, (8)

vg =
vt√

2

∫ ∞
0

√
y f1dy∫ ∞

0
f0dy

. (9)

By considering the explicit expressions of f1 (Eq. (4)) and
f2 (Eq. (5)), the above equations can be written as functions

Fig. 2 Weibel instability growth rate spectrum: γ(kλ). k is the
wave number of the Weibel mode and λ is the mean free
path of the electron. The dotted curve corresponds to
W̃O = 0.01, the dashed one corresponds to W̃O = 0.02
and the solid one corresponds to W̃O = 0.03. T = 1 keV
and ne = 1021 cm−3

of the scaling parameter, W̃O, so:

γmax

1011s−1
= 4.416 × 103

√
T⊥

keV

√
ne

cm−3

× W̃3/2
0

(1 + W̃O)−1/4 + 1
3 W̃O(1 + W̃O)−3/4

, (10)

vg = 0. (11)

Numerical analysis of this set of Eqs. (1)–(11) permits
to analyze the Weibel instability due to the laser pulse field
in the laser fusion plasma corona.

Because vg ∼ f1 = 0, the excited Weibel modes by
this mechanism are not convective. However, other Weibel
sources, such as those due to temperature and density gra-
dients in the corona, can contribute to the convection of
these modes. We present, on Fig. 2, the Weibel instability
growth rate spectrum γ(kλ), where k is the Weibel mode
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Fig. 3 γmax as function of the scaling parameter, W̃O =
WO
T . Te =

1 keV and ne = 1021 cm−3

wave number and λ is the electron mean free path. We also
present, in Fig. 3, the most unstable Weibel mode, γmax,
as a function of the scaling parameter, W̃O. These figures
show that the unstable Weibel modes are non collisionals,
kλ > 1. The growth rate of the most unstable Weibel mode
(Eq. (10)) is γmax ≥ 1011 s−1 in the vicinity of the critical
layer, ωp = ωL. We point out that the growth rate calcu-
lated in this model yields back results of the Fokker-Planck
simulations especially for low values of the scaling factor:
W̃O 
 1.

4. Scaling Laws
In the inertial target fusion experiments, the created

plasma parameters are linked to the parameters of the in-
cident laser pulse to the target. In Ref. [17], a scaling law
of the electron temperature is established. This law is ob-
tained by computation of the energy stock in the critical
layer, so:

Tec

keV
= 4.3

(
Ia

1014 W/cm2

)2/3 (
λL

µm

)4/3

, (12)

where Tec, Ia and λL are the electron temperature in the
critical layer, the absorbed laser intensity and the laser
wave length, respectively.

This Eq. (12) corresponds to the thermal energy in-
directly deposited by different absorption mechanisms
which are the inverse bremsstrahlung absorption, the reso-
nance absorption and the anomalous absorption. We point
out that the heating via these absorption mechanisms is
isotropic.

However, the electron quiver energy in the laser elec-
tric field (Eq. (2)) corresponds to the direct effect of the
laser pulse on the plasma electrons (direct heating). It is
an anisotropic heating in the direction of the laser electric
field.

In the laser inertial fusion experiments, the indirect
heating is important compared to the direct heating due to
the electron quiver energy in the laser electric field. This
is justified by the fact that the electron temperature, T ∼

keV, is largely greater than the photon energy, �ωL ∼ eV:
T � �ωL.

The electron density in the critical layer, nc, is given
by:

nc

cm−3
= 1.1 × 021

(
λL

µm

)−2

. (13)

The collision frequency in the critical layer is given by the
temperature, Te, the density, ne, and the plasma ionization
number, Z, as:

ϑc

s−1
= 3.4 × 10−9(Z + 1)

ne

cm−3

( Te

keV

)−3/2

lnΛ. (14)

lnΛmeans the Coulomb logarithm. In the case of the laser
fusion plasma, ln λ ≈ 10.

By taking into account the Eqs. (13), (14), the colli-
sion frequency in the critical layer for an isothermal corona
can be expressed as a function of the laser parameters as:

ϑc(s−1) ≈ 4.2 × 1011(Z + 1)

(
Ia

1014 W/cm2

)−1 (
λ

µm

)−4

,

(15)

ϑc

ωL
≈ 2.2 × 10−5(Z + 1)

(
Ia

1014 W/cm2

)−1 (
λ

µm

)−3

.

(16)

This equation shows that the collisions are efficient at
shorter laser wavelength.

The scaling parameter (Eq. (2)) is given by:

W̃O = 2.16 × 10−3

(
I

1014 W/cm2

)

×
(

Ia

1014 W/cm2

)−2/3 (
λ

µm

)2/3

×
⎡⎢⎢⎢⎢⎢⎣1 − 5 × 1010(Z + 1)2

(
Ia

1014 W/cm2

)−2 (
λ

µm

)−6⎤⎥⎥⎥⎥⎥⎦ ,
(17)

Ia = AIL, where IL is the laser pulse intensity and A is the
absorption coefficient.

The absorption coefficient [8, 9] due to the inverse
bremsstrahlung mechanism, for a linear density spatial
profile, is obtained in the WKB approximation by:

AIB = 1 − exp

(
−32

15
vt
c

Ln

λ

)
. (18)

Ln =
∣∣∣∣ �∇ne

ne

∣∣∣∣−1
is the density gradient length.

In the case where we can consider a monodimensional
corona expansion, the density profile is characterized by a
density gradient length proportional to the expansion ve-
locity and to the laser pulse duration, τ, so:

Ln ≈ CSτ, where CS =

√
ZTe
mi

is the sound speed in the

coronal plasma. mi means the ion mass.
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Using Eq. (12), Ln can be given by the following scale
law:

Ln

µm
≈ 9.4 × 1011

(
Ia

1014 W/cm2

)1/3 (
λ

µm

)2/3
τ

s
. (19)

The inverse bremsstrahlung absorption is then expressed
as:

AIB ≈ 1 − exp

⎡⎢⎢⎢⎢⎢⎣−5.51 × 102

(
Ia

1014 W/cm2

)2/3

×
(
λ

µm

)4/3
τ

ns

⎤⎥⎥⎥⎥⎥⎦ . (20)

Other mechanisms participate to the absorption of the laser
energy in the corona; namely the resonance absorption
mechanism in the vicinity of the critical layer. Subse-
quently, the effective absorption be greater than that due to
the inverse bremsstrahlung mechanism (Eq. (20)), A > AIB.
Then, in the laser fusion experiments using nanosecond
laser pulses with laser wavelength λL ≤ micrometer, we
can consider in a good approximation that the laser pulse
energy is totally absorbed with Ia = IL and A = 1.

It is important to express the local laser intensity, as
a function of the laser pulse parameters. The spatial evo-
lution, in the corona, of the laser electric field magnitude,
E0(x), in the case of a linear density profile is given by the
Ai Airy function [8, 9, 14], hence:

E0(x) = 2
√
π

(
ωLLn

c

)1/6

EvAi(ξ) exp

(
−ϑc(x)
ωL

)
, (21)

where Ev is the laser electric field magnitude in
the interface vacuum-plasma (x = Ln), and ξ =(
ωLLn

c

)2/6 (
x

Ln
+ iϑc(x)

ωL

)
is a dimensionless spatial coordinate.

The laser intensity in the critical layer, x = 0, is given
by:

Ic = 4π
(
ωLLn

c

)2/6

IvAi2(0) exp

(
−2ϑc(0)
ωL

)
. (22)

By taking into account the Eqs. (15), (16), (19), the laser
intensity in the critical layer can be expressed as:

Ic

1014 W
cm2

= 2.8 × 104 Iv

1014 W
cm2

⎛⎜⎜⎜⎜⎜⎝ Ia

1014 W
cm2

⎞⎟⎟⎟⎟⎟⎠
1/9 (
λL

µm

)−1/9 (
τ

s

)1/3

× exp

⎡⎢⎢⎢⎢⎢⎢⎣−4.4 × 10−5(Z + 1)

⎛⎜⎜⎜⎜⎜⎝ Ia

1014 W
cm2

⎞⎟⎟⎟⎟⎟⎠
−1 (
λL

µm

)−3
⎤⎥⎥⎥⎥⎥⎥⎦ .

(23)

The Eqs. (10), (12), (13), (17) allow us to establish a scal-
ing law for the growth rate of the most unstable Weibel
mode in the critical layer as:

γmax = 1.4 × (2 − A − 2
√

1 − A)3/2A−1/2ILλ
1/2
L τ

1/2

× exp
[
−6.6 × 10−5(Z + 1)A−1I−1

L λ
−3
L

]
. (24)

Fig. 4 γmax as function of the laser wavelength, λL. τ = 1 µm,
Z = 10 and IL = 1015 W/cm3

Fig. 5 γmax as function of the laser intensity, IL. τ = 1 ns, Z = 10
and λL = 1 µm

Here IL is the laser pulse intensity and A is the absorption
coefficient. With the intention of Iv = (2−A−2

√
1 − A)IL.

Note that IL in 1014 W/cm2, λL in µm and γmax in 1011 s−1.
We have presented on the Fig. 4 the γmax as a function

of the laser pulse intensity, IL, and, on the Fig. 5, we have
presented the γmax as function of the laser wavelength, λL.

In the case of the total absorption, A = 1, the above
expression is simplified as:

γmax = 1.4ILλ
1/2
L τ

1/2 exp
[
−6.6 × 10−5(Z + 1)I−1

L λ
−3
L

]
.

(25)

We point out from this that γmax ∼ ILλ
1/2
L τ

1/2. This cor-
responds to the results of the Ref. [6] using the Fokker-
Planck theory. It is in good agreement with the laser fu-
sion experiments which show a relatively stability for the
short laser pulse such as in fast ignition experiments using
the femto laser pulses. The resulting scaling laws permit
to optimize the laser parameters using in the fusion exper-
iments in order to minimize the energy losses due to the
Weibel instability.
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5. Conclusion
In the present work, the Weibel instability is studied in

the corona of the laser fusion plasma through a theoretical
model. The unperturbed electronic distribution function
is supposed to be a local bi-Maxwellian. The theoretical
model presented in this paper show highly unstable Weibel
modes in the vicinity of the critical layer: γmax > 1011 s−1.

Practical scaling laws are established for the insta-
bility parameters. The growth rate of the most unstable
Weibel mode, γmax, is proportional to ILλ

1/2
L τ

1/2. The re-
sults of this paper are in good agreement with the results
of the Ref. [6] founded in the frame of the kinetic Fokker-
Planck theory. Also the dependence of γmax on τ1/2 is in
agreement with the laser fusion experiments. The instabil-
ity is then reduced when the used laser pulse is shorter like
in fast ignition schemes.

The saturation of the Weibel instability by the nonlin-
ear effects and generated magnetic field is not studied in
this paper.

We expect that the theoretical study presented on this
paper permits to optimize the laser pulse parameters in or-
der to have minimum energy losses in the laser fusion ex-
periments.
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