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Surface waves were studied in cold cylindrical plasmas with axially non-uniform density profiles, and the
eigenfrequencies and eigenfunctions for the transverse-magnetic modes of pure and hybrid surface waves were
obtained numerically for collisional plasmas. The analysis of the wave equation takes into account the singularity
caused by plasma resonance at which the wave frequency is equal to the local electron plasma frequency. It is
shown that the axial eigenfunction of the pure surface mode peaks at the position of the plasma resonance layer,
whereas the axial eigenfunction of the hybrid surface mode has two peaks at the plasma resonance layer and at
the interface of the plasma and a quartz plate. Transverse-electric surface modes in axially non-uniform plasmas
without plasma resonance are also analyzed.
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1. Introduction
Surface waves have attracted much interest in the con-

text of production and heating for processing plasmas. Ear-
lier studies on surface waves in processing plasmas by
Ghanashev et al. [1–4] assumed spatially uniform plas-
mas. However, realistic processing plasmas should be non-
uniform, at least in the vicinity of a quartz plate, which is a
window for incident microwave transmission due to the ex-
istence of a plasma sheath. The non-uniformity of plasma
density near a quartz plate window has been observed in
several experiments [5–7].

In this paper, we study surface waves in cold cylin-
drical plasmas having a non-uniform density profile. In
particular, we investigate the problem of plasma reso-
nance [8–10]. The wave equation describing transverse
magnetic (TM) surface waves becomes singular on the
plasma resonance surface where the wave frequency ω

is equal to the local electron plasma frequency ωpe when
there are no collisions. This singularity leads to wave-
phase mixing and then causes damping of TM surface
waves. This phenomenon is the same as the resonant
absorption problem of p-polarized (that is, TM) electro-
magnetic waves with oblique incidence in inhomogeneous
plasmas. Here, we introduce a collision frequency term to
avoid the singularity due to plasma resonance, for simplic-
ity. The processing plasma is a low temperature plasma,
and hence it is considered that collisions with neutral par-
ticles are not negligibly small. On the other hand, we know
well that there is no plasma resonance for transverse elec-
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tric (TE) electromagnetic waves.
In the following section, we show the present model

for studying TM surface wave eigenmodes in a cylindri-
cal plasma with a non-uniform density profile. Assuming
that the plasma density is axially non- uniform (but radially
uniform), we derive coupled eigenmode equations for the
electric field components of TM surface waves. Section 3
attempts to solve the eigenmode equations for a plasma
with an axially non-uniform density profile and discusses
eigenvalues and eigenfunctions of TM surface waves of
pure and hybrid types [4]. The pure surface wave is defined
as an eigenmode that is evanescent in both the plasma and
quartz plate regions, whereas the hybrid surface wave is
a propagating mode in the quartz plate region, when the
plasma is uniform. Section 4 briefly discusses TE sur-
face waves in uniform and non-uniform plasmas. In this
case, we see that no plasma resonance arises, because wave
equation for TE surface waves has no singularity. Finally,
the results obtained in this study are summarized in Sec. 5.

2. Equations Describing TM Surface
Waves
This section describes the present plasma model for

studying TM surface waves. We here assume a cold
unmagnetized plasma contained by a cylindrical metallic
chamber having radius a. The axial configuration of the
model is shown in Fig. 1, where the metallic plate cor-
responding to the slot antenna is located at z = −h, a
quartz plate of ε1 = 4.0 for wave transmission exists for
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Fig. 1 Model with a non-uniform density profile.

−h < z < 0, and the plasma density N(z) with an axially
non-uniform profile exists for z > 0. We consider the TM
surface waves being localized in the vicinity of the inter-
face of plasma and quartz plate (i.e., z = 0).

Our starting point is Maxwell’s equations for electro-
magnetic wave fields E and B and the induced current den-
sity J,

∂

∂t
B = −∇ × E, (1)

∂

∂t
E = c2∇ × B − 1

ε0
J, (2)

∂

∂t
J = ε0ω

2
peE, (3)

where ωpe = (e2N/meε0)1/2 is the electron plasma fre-
quency, e the electric charge, me the electron mass, c the
speed of light, and ε0 the permittivity of free space. The
above equations describe electromagnetic waves propagat-
ing in a plasma. To describe electromagnetic waves in the
region of the quartz window, we use

∂

∂t
E =

c2

ε1
∇ × B, (4)

in place of Eqs. (2) and (3). If we assume an exp(−iωt)
dependence for E and B, we obtain,

∇(∇ · E) − ∇2E − k2
0εrE = 0, (5)

where εr is given by

εr =

{
ε1, −h < z < 0
εp, 0 < z

(6)

εp = 1 −
(ωpe

ω

)2
(7)

and k0 = ω/c. From the x and y components of Eq. (5), we
obtain

∂

∂x
∂Ez

∂z
+
∂

∂y
(iωBz) −

(
∂2

∂z2
+ k2

0εr

)
Ex = 0, (8)

∂

∂y

∂Ez

∂z
− ∂

∂x
(iωBz) −

(
∂2

∂z2
+ k2

0εr

)
Ey = 0. (9)

If we assume that the plasma density N is radially uniform
and is a function of z only, then εp becomes a function of z

only. In this case, as εr is a function of z only, Eqs. (8) and
(9) are unified:

∇2
⊥
∂

∂z
Ez −

(
∂2

∂z2
+ k2

0εr

)
∇⊥ · E⊥ = 0. (10)

Also, we obtain, from the z component of Eq. (5),

∂

∂z
∇⊥ · E⊥ −

(
∇2
⊥ + k2

0εr

)
Ez = 0. (11)

As the plasma is non-uniform along the z axis, we see that
Ez denotes the electrostatic contribution in surface wave
fields, and E⊥ expresses the electromagnetic component.
If we assume Ey = 0, ∂/∂y = 0 and ∂/∂x = ikx, in this
case, we obtain, from Eqs. (10) and (11),

d2

dz2
Ez −

(
k2

x − k2
0εp

)
Ez +

d
dz

(
Ez

dlnεp

dz

)
= 0. (12)

The solution of Eq. (12) describes TM electromagnetic
waves with oblique incidence [8] and shows significant
amplification of the electric wave field Ez at the plasma
resonance layer of ω = ωpe [9].

We here assume a separable wave form for Ez and ∇⊥ ·
E⊥,

Ez(r, θ, z) = ψ(r, θ)F(z), (13)

∇⊥ · E⊥(r, θ, z) = ψ(r, θ)G(z). (14)

If we assume that ψ satisfies
(
∇2
⊥ + λ

2
)
ψ(r, θ) = 0, (15)

where λ is the perpendicular wavenumber obtained from
the radial boundary condition:

Ez(r = a, θ, z) = ψ(r = a, θ) = 0, (16)

we obtain the following coupled equations for F(z) and
G(z):

λ2 d
dz

F +

[
d2

dz2
+ k2

0εr(z)

]
G = 0, (17)

d
dz

G +
[
λ2 − k2

0εr(z)
]

F = 0. (18)

The solution of Eq. (15) is given by

ψ(r, θ) = Jm(λr) [c1 cos(mθ) + c2 sin(mθ)] , (19)

where Jm is the Bessel function of the first kind, c1 and
c2 are the integration constants, and m is an integer. From
the boundary condition that Eθ = Ez = 0 at the metal wall
r = a, that is, Jm(λa) = 0, we obtain

λ = jmn/a, (20)

where jmn is the n-th root of Jm(x) = 0. Figure 2 shows
the profiles of the radial function ψ(r, θ) for (m, n) = (1, 4)
(a) and (m, n) = (8, 1) (b). Hereafter, Eqs. (17) and (18) are
the present basic equations for studying the axial profiles
of TM surface waves.
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Fig. 2 Radial profiles of ψ(r, θ) with (m, n) = (1, 4) (a) and (m, n) = (8, 1) (b).

3. TM Surface Waves in Non-uniform
Plasmas
As TM surface waves in a uniform plasma have been

studied in detail in earlier studies [1–4], in this section, we
consider TM surface waves in a non-uniform plasma. We
assume the axial density profile defined as

N(z) =

⎧⎪⎪⎨⎪⎪⎩
N0

z
d
, 0 < z < d

N0, z > d
(21)

where the plasma is non-uniform for 0 < z < d. Such
a density inhomogeneity can be generated in front of the
quartz plate as a plasma sheath. We now derive a wave
equation that is valid in the non-uniform plasma region 0 <
z < d. Differentiating Eq. (18) with z, we obtain

d2

dz2
G +

(
λ2 − k2

0εp

) dF
dz
− k2

0

dεp

dz
F = 0, (22)

and substituting Eq. (17) for dF/dz and Eq. (18) for F in
Eq. (22), we can obtain a wave equation for G:

d2G
dz2
+

λ2

λ2 − k2
0εp

1
εp

dεp

dz
dG
dz
−

(
λ2 − k2

0εp

)
G = 0.

(23)

We also obtain a wave equation for F as follows: From
Eqs. (17) and (22), eliminating d2G/dz2, we obtain

G +
dF
dz
+

1
εp

dεp

dz
F = 0, (24)

and, differentiating Eq. (24) with z and using Eq. (18), we
can obtain a wave equation for F:

d2F
dz2
−

(
λ2 − k2

0εp

)
F +

d
dz

(
F

dlnεp

dz

)
= 0. (25)

This wave equation is essentially the same as Eq. (12) in
the previous section.

We next try to solve the wave equation for G in the
non-uniform plasma region, where the axial boundary con-
ditions for G are G(z = −h) = 0 and G(z = +∞) = 0. We

assume λ2 � |k2
0εp|, which is justified for both low-density

plasmas and high m (or n) modes. Using this approxima-
tion, from λ2/(λ2 − k2

0εp) ≈ 1, Eq. (23) is reduced to

d2G
dz2
+

1
εp

dεp

dz
dG
dz
− λ2G = 0, (26)

and, from Eq. (18), F is approximated by

F = − 1
λ2

d
dz

G. (27)

We see that Eq. (26) becomes singular at zr = d(ω/ωp0)2,
as εp(z) = 1− (ωp0/ω)2(z/d), where ωp0 = (e2N0/meε0)1/2.
This singularity of εp = 0 in Eq. (26) corresponds to
plasma resonance. We mention here that Eq. (26) is quite
similar to the wave equation describing the spatial res-
onance of Alfvén waves discussed by L. Chen and A.
Hasegawa [11]. Thus, the plasma resonance due to the
singularity of εp = 0 causes the phase mixing of waves,
resulting in wave damping. However, for simplicity, we
introduce the collision frequency term to avoid the singu-
larity of the plasma resonance. We then replace εp(z) of
Eq. (7) by

εp(z) = 1 −
ω2

p0

ω(ω + iν)
N(z)
N0

, (28)

where ν is the collision frequency. The solution of Eq. (26)
is given by the modified Bessel function of the first and
second kinds, i.e., I0 and K0. Then we have, for a pure TM
surface wave,

F(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α1 cosh

[
p1(z + h)

]
, −h < z < 0

−1
λ

[
α2I1(ξ) − α3K1(ξ)

]
, 0 < z < d

α4 exp (−p2z) , z > d

(29)

G(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−α1 p1 sinh

[
p1(z + h)

]
, ad − h < z < 0

α2I0(ξ) + α3K0(ξ), 0 < z < d
α4 p2 exp (−p2z) , z > d

(30)

with

ξ = λ
[
z − dω(ω + iν)/ω2

p0

]
, (31)
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where α1, α2, α3, and α4 are integration constants, and p1

and p2 are defined in the previous section. Thus, three of
α1, α2, α3, and α4 and the dispersion equation for pure TM
surface wave can be obtained from the continuity condi-
tions at z = 0 and z = d, i.e.,

ε1F(+0) = εpF(−0) and G(−0) = G(+0),

F(d + 0) = F(d − 0) and G(d − 0) = G(d + 0). (32)

From the above continuity conditions, we can obtain the
dispersion equations of pure TM surface modes as

t2I1(ξ2) − I0(ξ2)
t2K1(ξ2) + K0(ξ2)

=
t1I1(ξ1) + I0(ξ1)

t1K1(ξ1) − K0(ξ1)
, (33)

with

t1 =
p1

λε1
tanh(p1h), t2 = − p2

λ
. (34)

ξ1 = λd
ω(ω + iν)

ω2
p0

, ξ2 = λd

⎡⎢⎢⎢⎢⎢⎣1 − ω(ω + iν)

ω2
p0

⎤⎥⎥⎥⎥⎥⎦ . (35)

On the other hand, for hybrid TM surface waves, the solu-
tions of F and G for 0 < z < d are replaced by

F(z) = α1 cos
[
q1(z + h)

]
, 0 < z < d,

G(z) = α1q1 sin
[
q1(z + h)

]
, 0 < z < d,

where q1 is given by q1 =

√
k2

0ε1 − λ2. Similarly, we ob-
tain the dispersion equation for hybrid TM surface wave,
that is, Eq. (33) with

t1 = − q1

λε1
tan(q1h), t2 = − p2

λ
. (36)

For the collision frequency, we assume that νa/c =

0.01N0/N∗, N∗ being the density at (ωp0a/c)2 = 50.
Figure 3 shows the eigenfrequencies and damping rates
of pure TM81 and TM16 surface modes as a function of
(ωp0a/c)2, where the parameters are h/a = 0.2 and d/a =
0.3, with j81 = 12.225 and j16 = 19.616. We observe that
the damping rate Im(ω) is almost linearly proportional to
(ωp0a/c)2. From the numerical calculation for the case of
νa/c = 0.1N0/N∗, we find that the damping rate is also
linearly proportional to the collision frequency ν. Figure 4

Fig. 4 Eigenfunctions |G| and |F| of pure TM81 surface mode for (ωp0a/c)2 = 50, where h/a = 0.2 and d/a = 0.3.

Fig. 3 Eigenfrequencies and damping rates of pure TM81 and
TM16 surface modes, where h/a = 0.2 and d/a = 0.3.

shows the eigenfunctions G and F of the pure TM81 mode
for (ωp0a/c)2 = 50, where the other parameters are the
same as those in Fig. 3. We observe that the eigenfunction
|G| of the pure TM81 surface mode has a peak at the po-
sition zr = d(ω/ωp0)2 of the plasma resonance satisfying
εp(z) = 0 for ν = 0. On the other hand, the eigenfunction
G of pure TM surface mode in a uniform plasma has a peak
on the interface between the quartz-plate and plasma. We
observe that the eigenfunction |F| peaks at the position zr

of the plasma resonance, and there is a jump in |F| at the
interface z = 0 because of Eq. (32). Comparison between
F and G suggests that the eigenfunction F is more sharply
localized than that of G.

In the case of hybrid TM surface waves, we have to
solve the dispersion equation of Eq. (33) with Eq. (36) to
obtain the eigenfrequencies. As p2 > 0 and q1 > 0 for hy-
brid TM surface waves, the wave frequency ω must satisfy

λa/
√
ε1 < ωa/c <

√(
ωp0a/c

)2
+ (λa)2

when ω is real. However, if we assume the existence of
plasma resonance in the non-uniform plasma region, as ω
must satisfy ω < ωp0, the wave frequency ω is in the range

λa/
√
ε1 < ωa/c < ωp0a/c.
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Fig. 5 Eigenfrequency of hybrid TM81 surface mode, where
h/a = 0.2 and d/a = 0.3.

Figure 5 shows the lowest eigenfrequency of a hybrid
TM81 surface wave, where the parameters are the same
as those in Fig. 3. In this case, we observe that the real
frequency of the hybrid surface mode depends weakly on
(ωp0a/c)2, and the damping rate is much smaller than that
of the pure surface mode. Figure 6 shows the axial eigen-
functions G and F of the lowest hybrid TM81 surface mode
for (ωp0a/c)2 = 55, where the other parameters are the
same as those in Fig. 5. For hybrid surface wave, two peaks
appear in the axial wave profile of |G|. One peak is lo-
calized at the plasma resonance point of εp(z) = 0, and
the other on the interface between the plasma and quartz
plate. On the other hand, the wave function G for pure sur-
face wave has a peak only at the plasma resonance point,
as shown in Fig. 4. The axial eigenfunction |F| peaks at
the plasma resonance point and has a discontinuity on the
plasma-quartz plate interface, as shown in Fig. 5. Figure 7
shows the axial eigenfunctions |G| and |F| of the lowest
hybrid TM81 surface mode at (ωp0a/c)2 = 60, where the
other parameters are the same as those in Fig. 6. Although,
in this case, we observe two peaks in |G|, the peak at the
plasma resonance point is higher than that on the plasma-
quartz plate interface (Fig. 6). Therefore, we observe that
the detailed structure of the two peaks depends on the value
of (ωp0a/c)2. We note here that Eq. (23) and Figs. 2 and 3

Fig. 6 Eigenfunctions |G| and |F| of hybrid TM81 surface mode for (ωp0a/c)2 = 55, where h/a = 0.2 and d/a = 0.3.

Fig. 7 Eigenfunctions |G| and |F| of hybrid TM81 surface mode
for (ωp0a/c)2 = 60, where h/a = 0.2 and d/a = 0.3.

in Ref. [10] should be replaced by Eq. (34) and Figs. 3 and
4 of this article, respectively.

4. TE Surface Waves in Non-uniform
Plasmas
In this section, we study TE surface waves in non-

uniform plasmas, although in this case, there is no plasma
resonance corresponding to a singularity in the wave equa-
tion. From Eqs. (1) to (3), the TE surface waves are de-
scribed by

(
∇2
⊥ +

∂2

∂z2
+ k2

0εr

)
Bz = 0. (37)

Using a method similar to that used for TM surface waves
and assuming the following separable form,

Bz(r, θ, z) = ψ(r, θ)R(z), (38)

we can obtain the below equation for R(z):

d2

dz2
R −

[
λ2 − k2

0εr(z)
]

R = 0. (39)

From Eq. (39), we see that plasma resonance does not ap-
pear for TE surface waves, although a cutoff can appear at
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λ2 = k2
0εr. For TE modes, the radial boundary condition,

i.e., Eθ = 0 at r = a, is reduced to

∂ψ/∂r|r=a = 0. (40)

From Eq. (40), we obtain

λ = j′mn/a, (41)

where j′mn is the n-th root of dJm/dr = 0.
We now consider TE surface waves in an axially non-

uniform plasma, assuming the same density profile dis-
cussed in the previous section. In this case, for 0 < z < d,
Eq. (39) is reduced to

d2

dζ2
R − ζR = 0, (42)

ζ =
[(
ωp0/c

)2
/d

] 1
3
[
z + d

(
λ2 − k2

0

) (
c/ωp0

)2
]
. (43)

The solution of Eq. (42) is given by the Airy functions
Ai(ζ) and Bi(ζ), which are expressed in terms of the mod-
ified Bessel functions as [12]

Ai(ζ) = (1/π)
√
ζ/3K1/3

(
2ζ3/2/3

)
, (44)

Bi(ζ) =
√
ζ/3

[
I−1/3

(
2ζ3/2/3

)
+ I1/3

(
2ζ3/2/3

)]
.

(45)

Therefore, the solution of Eq. (39) for a pure TE surface
wave is obtained by

R(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α1 sinh

[
p1(z + h)

]
, −h < z < 0

α2Ai(ζ) + α3Bi(ζ), 0 < z < d
α4 exp (−p2z) , z > d

(46)

and, for a hybrid surface wave by

R(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α1 sin

[
p1(z + h)

]
, −h < z < 0

α2Ai(ζ) + α3Bi(ζ), 0 < z < d
α4 exp (−p2z) , z > d

(47)

where three of α1, α2, α3, and α4 and the dispersion equa-
tion for TE surface waves are obtained from the continuity
conditions at z = 0 and z = d, i.e.,

R(+0) = R(−0), and R′(+0) = R′(−0), (48)

and

R(d+0) = R(d−0), and R′(d+0) = R′(d−0). (49)

We then have

t2Ai(z = d) − Ai′(z = d)
t1Ai(z = 0) − Ai′(z = 0)

=
t2Bi(z = d) − Bi′(z = d)
t1Bi(z = 0) − Bi′(z = 0)

, (50)

with, for pure TE surface waves,

t1 =
p1

s
coth(p1h), t2 = − p2

s
, (51)

Fig. 8 Axial eigenfunction R of hybrid TE81 surface mode,
where h/a = 0.2, d/a = 0.3 and ωp0a/c = 10. In this
case, the eigenfrequency is ωa/c = 8.30.

and for hybrid TE surface waves,

t1 =
q1

s
cot(q1h), t2 = − p2

s
, (52)

where s =
[(
ωp0/c

)2
/d

]1/3
.

For pure TE surface waves, we observe that the nu-
merical computation of Eq. (50), using Eq. (51), yields no
solution. This is indicated in Ref. [1] for the case of uni-
form plasmas. On the other hand, we clearly observe that
hybrid-mode solutions of the TE surface wave in Eq. (50)
with Eq. (52) exist. Figure 8 shows the axial eigenfunction
R of the lowest hybrid TE81 surface mode, where h/a =
0.2, d/a = 0.3, and ωp0a/c = 10 are assumed. In this case,
the eigenfrequency is ωa/c = 8.30 for ωp0a/c = 10, where
we assumed ν = 0, as there is no singularity for TE surface
waves. We see that the eigenfunction R decays exponen-
tially in the plasma region.

5. Summary
We have studied TM and TE surface waves in plasmas

with axially non-uniform density profiles. For TM sur-
face waves, we derived the eigenmode equation describ-
ing the axial wave profile. The eigenmode equation be-
comes singular at the plasma resonance point, where the
wave frequency is equal to the local electron plasma fre-
quency, when the plasma is collision-free. By solving the
eigenmode equation for collisional plasmas, we obtained
the eigenfrequencies and axial eigenfunctions of pure and
hybrid TM surface waves. We found that the axial eigen-
function of the pure TM surface mode peaks strongly at
the plasma resonance point; on the other hand, the peak in
the eigenfunction of the hybrid TM surface mode occurred
both at the plasma resonance point and at the interface be-
tween the plasma and quartz plate. We also obtained the
axial eigenfunction of the hybrid TE surface wave in axi-
ally non-uniform plasmas without plasma resonance.
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