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By explicitly excluding the Pfirsch-Schlüter diffusion and Spitzer terms from the perturbed distribution
functions in δ f drift-kinetic Monte Carlo simulations, off-diagonal neoclassical transport coefficients for quasi-
symmetric toroidal plasmas can be calculated properly, ensuring the constancy of the geometric factor in the exact
axisymmetric limit.
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Neoclassical transport studies in nonsymmetric
toroidal plasmas require numerical solutions of the lin-
earized drift-kinetic equations [1]. For this purpose, var-
ious numerical schemes such as δ f Monte Carlo meth-
ods [2–7] have been developed. To efficiently use numer-
ical solutions, several authors [8–10] have presented mo-
ment formalisms that facilitate the evaluation of the neo-
classical viscosity, diffusion, and bootstrap current from
the solutions of the drift-kinetic equations with the pitch-
angle scattering approximation. What is interesting in
these literature is that we can find three different expres-
sions of the linearized drift-kinetic equations. The first
(denoted by DKE1) was recently derived by Sugama and
Nishimura [9], the second one (denoted by DKE2) is used
in the well-known DKES code [11], and the third one (de-
noted by DKE3) is that used, e.g., in Beidler et al. [1]
and in Hirshman et al. [12]. Although DKE2 and DKE3
were studied previously (see Ref. [7]), direct numerical so-
lutions of DKE1 have not yet been evaluated. In this letter,
by δ f Monte Carlo methods, we investigate how the choice
of drift-kinetic equation affects the neoclassical transport
coefficients evaluated. DKE1 is shown to have advantages
in applications to quasi-symmetric stellarators [13].

In the coordinate system (x, v, ξ), where x is the
guiding-center position, v is the particle velocity, and ξ ≡
v‖/v is the pitch variable, DKE1 is written as

• DKE1:

(∂t + V‖ −CPAS)

[
gu

gx

]
=

[
σu

σx

]
, (1)

author’s e-mail: matuyama@center.iae.kyoto-u.ac.jp

σx ≡ −v2P2(ξ)
b · ∇(BŨ)

2Ω
, (2)

σu ≡ −V‖(mvξB) = −mv2P2(ξ)B · ∇ ln B. (3)

Here, P2(ξ) = 3
2ξ

2 − 1
2 , B ≡ |B|, b = B/B, Ω ≡ eB/m, and

V‖ = vξb · ∇ − 1
2
v(1 − ξ2)(b · ∇ ln B)

∂

∂ξ
, (4)

CPAS =
νD

2
∂

∂ξ
(1 − ξ2)

∂

∂ξ
. (5)

We employ the contravariant and covariant representations
of B in Boozer coordinates (s, θ, ζ): B = ψ′∇s×∇θ+χ′∇ζ×
∇s = Bs∇s + Bθ∇θ + Bζ∇ζ, where θ and ζ are the poloidal
and toroidal angles, s represents an arbitrary surface label,
and the prime denotes the derivative with respect to s; 2πχ
and 2πψ are the poloidal and toroidal fluxes, respectively.
In Eq. (1), the function Ũ is the Pfirsch-Schlüter flow func-
tion defined in [9]. It can be written as

Ũ(s, θ, ζ) =
V ′

4π2B
B × ∇s · ∇G(s, θ, ζ), (6)

where V(s) denotes the volume enclosed by the flux
surface, while G(s, θ, ζ) is obtained from ψ′(∂G/∂ζ) +
χ′(∂G/∂θ) = 〈B2〉/B2 − 1. The effect of E × B drift is not
considered in this work. For comparison, we also solved
the two other drift-kinetic equations, DKE2 and DKE3,
which are written as

• DKE2:

(∂t + V‖ −CPAS)

[
g1

g3

]
=

[
σ1

σ3

]
, (7)
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σ1 = −ud · ∇s

= −2v2

3Ω

[
1 +

1
2

P2(ξ)

]
b × ∇ ln B · ∇s, (8)

σ3 = V‖(Bvξ/νD) =
v2

νD
P2(ξ)B · ∇ ln B. (9)

• DKE3:

(∂t + V‖ −CPAS)

[
g1

ge

]
=

[
σ1

σe

]
, (10)

σe = Bvξ. (11)

For Eqs. (1), (7), and (10), the following identities
hold if one assumes the steady-state solutions as ∂tgi ≡
0 [9, 11]:

g1 = −gx − B
Ω
vξŨ +

νDB
Ω

∫ l

Ũdl, (12)

g3 = −gu/(mνD), (13)

ge = −g3 + Bvξ/νD, (14)

where
∫ l

dl denotes the integral along the field line. The
relationships among the microscopic fluxes σi can be writ-
ten as

σ3 = −σu/(mνD), (15)

σ1 = −σx − V‖(BvξŨ/Ω). (16)

The second and third terms of Eq. (12) are related
to Pfirsch-Schlüter diffusion, while the second term of
Eq. (14) indicates the classical Spitzer distribution, which
is the solution of −CPASgS = Bvξ. Noted that these terms
do not contribute to off-diagonal elements of the neoclas-
sical transport matrix, such as the bootstrap current coef-
ficients, but contributes only to diagonal ones such as the
Pfirsch-Schlüter diffusion and electrical conductivity coef-
ficients. We emphasize that DKE1 explicitly removes these
terms, which are irrelevant to off-diagonal transport coeffi-
cients, from the perturbed distribution functions that drive
neoclassical transport.

Using the solutions of DKE1, DKE2, and DKE3, ele-
ments of the neoclassical transport matrix for each pair of
indices, (x, u), (1, 3), or (1, e), can be evaluated as

Di j = (σi, g j), (17)

where the parentheses denote the inner product operation

(α, β) ≡ 1
2

∫ 1

−1
dξ〈αβ〉 with surface averaging 〈· · · 〉. The

common properties of DKE1, DKE2, and DKE3 are the
antisymmetry of V‖ and the symmetry of CPAS with respect
to the inner product operation. These can be written as

(α,V‖β) = −(V‖α, β), (α,CPASβ) = (CPASα, β).

(18)

Using Eq. (18), the Onsager symmetry of the transport ma-
trix can be formally shown for DKE1 and 2 such that

(σi, g j) = (σ j, gi) for (1, 3), or (x, u). (19)

For DKE3, De1 = −D1e because of the odd parity of σe,
but |D∗xu| = |D∗31| = |D∗e1|, where asterisks denote the ap-
propriate normalization following that of Ref. [9]. We note
that the accuracy of Di j = Dji for i � j depends on the
phase space resolution of δ f Monte Carlo methods because
Eq. (18) can be realized only in the limit of a large number
of test particles as N → ∞, which is normally inaccessible
in particle simulations.

The property of the neoclassical transport matrix Di j

in the axisymmetric limit of magnetic field geometry plays
an important role in this work. As derived in Ref. [14], for
DKE1, the microscopic flux σx can be analytically decom-
posed into two parts; σx ≡ σ(sym)

x + σ
(asym)
x , where

σ
(sym)
x ≡ − σu

2eχ′ψ′

[
ψ′Bζ − χ′Bθ
〈B2〉 +

V ′

4π2
H2

]
,

(20)

σ
(asym)
x ≡ m

2eχ′ψ′
B
〈B2〉 v

2P2(ξ)

[
χ′(1 − H2)

∂B
∂θ

−ψ′(1 + H2)
∂B
∂ζ

]
+

m
e

B
〈B2〉 v

2P2(ξ)

×
[
∂G
∂ζ

∂B
∂θ
− ∂G
∂θ

∂B
∂ζ

]
. (21)

The function H2 is given by [15]

H2 ≡ 〈(χ
′∂B/∂θH)2 − (ψ′∂B/∂ζH)2〉
〈(χ′∂B/∂θH + ψ′∂B/∂ζH)2〉 , (22)

where θH and ζH are the poloidal and toroidal angles in
Hamada coordinates. With this decomposition, one can
show that for axisymmetric plasmas, σx becomes propor-
tional to σu. Note that σx = σ

(sym)
x = Fuσu with the

surface quantity Fu = −Bζ/[eχ′〈B2〉], defined by Eq. (20)
because σ

(asym)
x ≡ 0. The linearity of Eq. (1) leads to

gx = g
(sym)
x = Fugu. According to this property, the trans-

port matrix Di j (i, j = x, u) for axisymmetric plasmas sub-
stantially degenerates to single elements Duu. For diagonal
elements, Dxx = F2

u Duu, while for off-diagonal elements,
the Onsager relation holds exactly without invoking the
symmetric properties of Eq. (18) as

(σx, gu) = (σu, gx) = FuDuu. (23)

It is worth noting that this degeneracy in axisymmetric
tokamaks is related to vanishing toroidal viscosity. To en-
sure the Onsager relation for DKE2 and 3 in the axisym-
metric limit, we also need to impose the symmetric prop-
erties of Eq. (18) and the orthogonality conditions, namely
(α, β) = 0. However, these properties and conditions are
not exact. They depend on the phase space resolution. For
instance, (BvξŨ/Ω, σ3) ≈ 0 is an approximate expression
with large finite N. In what follows, we demonstrate the
above consideration regarding the Onsager relation in ax-
isymmetric systems by performing δ f drift-kinetic simula-
tions.

To solve the linearized drift-kinetic equations, we
used the linearized δ f Monte Carlo weighting scheme
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Fig. 1 Time history of off-diagonal transport coefficients D∗xu

and D∗ux calculated with DKE1 for three different εh

(where εt = 0.1). The collisionality is νD/v = 3 × 10−2.
The number of particles used is N = 3000.

(e.g., as discussed in Ref. [3]), which is suitable for de-
termining local transport coefficients as functions of the
surface label without causing particle loss from the com-
putational region. The lowest-order guiding-center motion
(i.e., the parallel motion along the field lines) is solved
by the fourth-order Runge Kutta method, and the pitch-
angle scattering operator is implemented in the manner of
Boozer and Kuo-Petravic [16]. The magnetic field used
here is the single-helicity model B = B0[1 − εt cos θ −
εh cos(2θ−10ζ)], whose configuration parameters are those
listed in Ref. [7].

To examine the Onsager relations numerically, we
calculated normalized off-diagonal elements D∗i j (i � j)
with DKE1 in exact (εh = 0) and in nearly axisymmet-
ric (εh = 0.005 and 0.01) systems. Figure 1 shows the
time history of a pair of off-diagonal elements D∗xu and D∗ux

for the collisionality νD/v = 3 × 10−2 (located between
the plateau and Pfirsch-Schlüter regimes for εh = 0). The
results obtained with DKE1 clearly indicate that the dif-
ference |D∗xu − D∗ux| between off-diagonal elements, which
is a measure of the numerical error in the Onsager rela-
tion, monotonically decreases with the reduction of the he-
lical perturbation. In the limit of axisymmetry, the On-
sager relation holds regardless of time νDt as the relation
σx ∝ σu suggests. Similar calculations performed with
DKE2, however, uncovered an important difference. As
shown in Fig. (2), |D∗13 − D∗31| calculated with DKE2 de-

Fig. 2 Time history of off-diagonal transport coefficients D∗31
and D∗13 calculated with DKE2 for three different εh

(where εt = 0.1). The collisionality is νD/v = 3 × 10−2.
The number of particles used is N = 3000.

creased with εh but did not vanish, even in the axisymmet-
ric limit.

To clarify the nonvanishing errors |D∗i j − D∗ji| (i � j)
for nonaxisymmetric runs in Fig. 1, we examined the con-
vergence properties of the Onsager relation for small but
finite εh. In Fig. 3, by changing the number of particles
N used, we illustrate how the time history of the pair of
off-diagonal elements D∗xu and D∗ux calculated with DKE1
is affected. One can see a clear reduction in the error as-
sociated with the Onsager symmetry with increasing N in
the simulations. In Fig. 4, the dependences of the errors
|D∗i j − D∗ji| (i � j) on N are compared for the three drift-
kinetic equations. Note that |D∗e1 +D∗1e| has been evaluated
for (1, e) because of odd parity. From Fig. 4, we see that the
errors |D∗i j − D∗ji| (i � j) have Monte-Carlo convergences

of 1/
√

N for all the pairs. Although |D∗i j − D∗ji| were com-
parable with any choices of the drift-kinetic equation for
the lower collisionality νD/v = 10−3, the smaller error was
observed with DKE1 in the plateau and Pfirsch-Schlüter
regimes, where the Pfirsch-Schlüter diffusion and Spitzer
terms in Eqs. (12) and (14) become significant.

The degeneracy of σx to σu in the axisymmetric limit
is physically interpreted by the fact that the banana-plateau
fluxes become proportional to the parallel viscosity. In
such systems, the geometric factor G(BS) is always constant
such that G(BS) = −e〈B2〉Dxu/Duu = Bζ/χ′. We have con-
firmed this by a numerical experiment estimating the geo-
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Fig. 3 Time history of off-diagonal transport coefficients D∗xu

and D∗ux calculated with DKE1 for three different num-
bers of particles N, where εh = 0.01 and εt = 0.1. The
collisionality is νD/v = 3 × 10−2.

Fig. 4 Dependence of |D∗i j−D∗ji| (i � j) on the number of test par-
ticles N for three different drift-kinetic equations (DKE1,
DKE2, and DKE3), where εh = 0.01 and εt = 0.1. The
errors |D∗i j − D∗ji| shown are the maximum (upper bound)
in time. The collisionalities are (a) νD/v = 1 × 100, (b)
3 × 10−2, and (c) 1 × 10−3, respectively.

metric factor “dynamically” in terms of the time-dependent
transport coefficients as

G(BS)(t) = −
〈B2〉D̄∗i j(t)

(νD/v)D∗uu, or 33(t)
, (24)

where D̄∗i j(t) =
1
2 [D∗i j(t) + D∗ji(t)] for i � j. Note that

D∗uu(t) = D∗33(t). Figure 5 shows the time history of G(BS)(t)
for quasi-axisymmetric systems with DKE1 and DKE2.
We have also plotted the G(BS) given in Ref. [9] (calcu-
lated with the DKES code) for finite εh cases. As shown

Fig. 5 “Dynamical” estimation of the geometric factor G(BS)(t)
with (a) DKE1 and (b) DKE2 for nearly axisymmetric
systems with εh = 0, 0.005, and 0.01, where εt = 0.1.
Dashed lines indicate the numerical value obtained from
the DKES code in Ref. [9]. The collisionality is νD/v =

3 × 10−2; 3000 particles are employed.

in Fig. 5, DKE1 can properly reproduce G(BS) = Bζ/χ′ in
the axisymmetric case because of the degeneracy σx ∝ σu.
Simulation results obtained with DKE1 converged to re-
sults from the DKES code faster than those with DKE2.

In summary, we have shown that DKE1 can appro-
priately treat numerical solutions of the drift-kinetic equa-
tions in axisymmetric systems by explicitly excluding the
Pfirsch-Schlüter diffusion and Spitzer terms. These terms
are irrelevant to the off-diagonal neoclassical transport
coefficients and cause additional “numerical noise” that
breaks the Onsager relations. Theoretically, the impor-
tance of excluding these collisional contributions can be
explained by the the formal decomposition of the entropy-
production rate [17] with the banana-plateau and with the
Pfirsch-Schlüter fluxes, which was derived by Sugama and
Horton [17]. The numerically realized constancy of the ge-
ometric factor obtained with DKE1 in the exact symmet-
ric limit would be useful for simulation studies of quasi-
symmetric stellarators.

We here investigated the numerical accuracy of the
Onsager relations for nonaxisymmetric toroidal plasmas as
well. Although many authors [17–21] have discussed the
Onsager symmetry with respect to neoclassical transport
by analytical treatments, we showed that the Onsager re-
lations for nonaxisymmetric systems inherently depend on
the phase space resolution, which has been demonstrated
by the 1/

√
N scaling of Fig. 4. To our knowledge, such

numerical confirmation of Di j = Dji for i � j with Monte
Carlo methods has not been reported so far.
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