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We present a short review of recent developments in nonlinear quantum plasma physics, including quantum
hydrodynamic and effective nonlinear shrödinger equation formalisms, for describing collective phenomena in
quantum plasmas. As examples we discuss simulation studies of the formation and dynamics of dark solitons
and vortices, and of nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves
and electron plasma oscillations (EPOs) in dense in quantum electron plasmas. The electron dynamics of dark
solitons and vortices is governed by a pair of equations comprising the nonlinear Schrödinger and Poisson equa-
tions. Both dark solitons and singly charged electron vortices are robust, and the latter tend to form pairs of
oppositely charged vortices. The two-dimensional quantum electron vortex pairs survive during collisions under
the change of partners. The dynamics of the CPEM waves is governed by a nonlinear Schrödinger equation,
which is nonlinearly coupled with the Schrödinger equation of the EPOs via the relativistic ponderomotive force,
the relativistic electron mass increase in the CPEM field, and the electron density fluctuations. The present gov-
erning equations in one spatial dimension admit stationary solutions in the form dark envelope solitons. The
nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to
the formation and trapping of localized CPEM wave envelopes in the electron density holes that are associated
with positive potential profiles.
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1. Introduction
About forty five years ago, Pines [1] had laid down

foundations for quantum plasma physics through his
studies of the properties of electron plasma oscillations
(EPOs) in a dense Fermi plasma. The high-density,
low-temperature quantum Fermi plasma is significantly
different from the low-density, high-temperature “clas-
sical plasma” obeying the Maxwell-Boltzmann distribu-
tion. In a very dense quantum plasma, there are new
equations of state [2–4] associated with the Fermi-Dirac
plasma particle distribution function and there are new
quantum forces involving the quantum Bohm potential [5]
and the electron spin-1/2 effect [6] due to magnetization.
It should be noted that very dense quantum plasmas ex-
ist in intense laser-solid density plasma interaction exper-
iments [7–10], in laser-based inertial fusion [11], in astro-
physical and cosmological environments [12–15], and in
quantum diodes [16–18].

During the last decade, there has been a growing in-
terest in investigating new aspects of dense quantum plas-
mas by developing the quantum hydrodynamic (QHD)
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equations [5] by incorporating the quantum force associ-
ated with the Bohm potential [5]. The Wigner-Poisson
(WP) model [19, 20] has been used to derive a set of
quantum hydrodynamic (QHD) equations [2,3] for a dense
electron plasma. The QHD equations include the con-
tinuity, momentum and Poisson equations. The quan-
tum nature [2] appears in the electron momentum equa-
tion through the pressure term, which requires the knowl-
edge of the Wigner distribution for a quantum mixture of
electron wave functions, each characterized by an occupa-
tion probability. The quantum part of the electron pres-
sure is represented as a quantum force [2, 5] −∇φB, where
φB = −(�2/2me

√
ne)∇2 √ne, � is the Planck constant di-

vided by 2π, me is the electron mass, and ne is the elec-
tron number density. Defining the effective wave function
ψ =

√
ne(r, t) exp[iS (r, t)/�], where ∇S (r, t) = meue(r, t)

and ue(r, t) is the electron velocity, the electron momen-
tum equation can be represented as an effective nonlin-
ear Schrödinger (NLS) equation [2–4], in which there ap-
pears a coupling between the wave function and the elec-
trostatic potential associated with the EPOs. The elec-
trostatic potential is determined from the Poisson equa-
tion. We thus have the coupled NLS and Poisson equa-
tions, which govern the dynamics of nonlinearly interact-
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ing EPOs is a dense quantum plasmas. This mean-field
model of Refs. [2, 3] is valid to the lowest order in the
correlation parameter, and it neglects correlations between
electrons. The QHD equations are useful for deriving the
Child-Langmuir law in the quantum regime [17,18] and for
studying numerous collective effects [2–4, 21–24] involv-
ing different quantum forces (e.g. due to the Bohm poten-
tial [5] and the pressure law [2, 3] for the Fermi plasma,
as well as the potential energy of the electron−1/2 spin
magnetic moment in a magnetic field [25]). In dense plas-
mas, quantum mechanical effects (e.g. tunnelling) are im-
portant since the de Broglie length of the charge carriers
(e.g. electrons and holes/positrons) is comparable to the di-
mensions of the system. Studies of collective interactions
in dense quantum plasmas are relevant for the next gen-
eration intense laser-solid density plasma experiments [8,
10,26], for superdense astrophysical bodies [12,14,15,27]
(e.g. the interior of white dwarfs and neutron stars), as
well as for micro and nano-scale objects (e.g. quantum
diodes [17, 18], quantum dots and nanowires [28], nano-
photonics [29, 30], ultra-small electronic devices [31]) and
micro-plasmas [32]. Quantum transport models similar to
the QHD plasma model have also been used in superflu-
idity [33] and superconductivity [34], as well as the study
of metal clusters and nanoparticles, where they are re-
ferred to as nonstationary Thomas-Fermi models [35]. The
density functional theory [36–38] incorporates electron-
electron correlations, which are neglected in the present
paper.

It has been recently recognized [26, 39, 40] that quan-
tum mechanical effects play an important role in intense
laser-solid density plasma interaction experiments. In the
latter, there are nonlinearities [41] associated with the elec-
tron mass increase in the electromagnetic (EM) fields and
the modification of the electron number density by the rela-
tivistic ponderomotive force. Relativistic nonlinear effects
in a classical plasma are very important, because they pro-
vide the possibility of the compression and localization of
intense electromagnetic waves.

In this paper, we review the properties of quantum
plasmas and recent developments in the formalism to study
nonlinear collective behavior in a quantum plasma. As ex-
amples of this formalism, we investigate theoretically and
numerically the formation and dynamics of dark/gray en-
velope solitons and vortices in quantum electron plasmas
with fixed ion background. The results are relevant for
the transport of information at quantum scales in micro-
plasmas as well as in micro-mechanical systems and mi-
croelectronics. For our purposes, we shall use an effective
Schrödinger-Poisson model [2, 21–24], which was devel-
oped by employing the Wigner formalism for the quan-
tum statistical electron dynamics coupled with the Poisson
equation for the electric potential. Such a model was orig-
inally derived by Hartree in the context of atomic physics
for studying the self-consistent effect of atomic electrons
on the Coulomb potential of the nucleus. Finally, we

present theoretical and simulation studies of the CPEM
wave modulational instability against EPOs, as well as the
trapping of localized CPEM waves into a quantum elec-
tron hole in very dense quantum plasmas, which may be
relevant for the next generation intense laser-plasma inter-
action experiments.

2. Properties of Quantum Plasma
We here summarize some of the properties that dis-

tinct quantum plasmas from classical plasmas. While clas-
sical plasmas are characterized by low density and high
temperature, quantum plasmas have high density and low
temperature.

The quantum N-body problem is governed by the
Schrödinger equation for the N-particle wave function
ψ(q1, q2, . . . , qN , t) where q j = (r j, s j) is the coordinate
(space, spin) of particle j. For identical Fermions, the equi-
librium N-particle wave function is given by the Slater de-
terminant [42]

ψ(q1, q2, . . . , qN , t) =
1√
N!

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(q1, t) ψ2(q1, t) · · · ψN(q1, t)
ψ1(q2, t) ψ2(q2, t) · · · ψN(q2, t)

...
...

. . .
...

ψ1(qN , t) ψ2(qN , t) · · · ψN(qN , t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(1)

which is anti-symmetric under odd numbers of permuta-
tions. Hence, ψ vanishes if two rows are identical, which
is an expression of the Pauli exclusion principle that two
identical Fermions cannot occupy the same state. Ex-
ample (N = 2): ψ(q1, q2, t) = 1√

2
[ψ1(q1, t)ψ2(q2, t) −

ψ1(q2, t)ψ2(q1, t)] so that ψ(q2, q1, t) = −ψ(q1, q2, t) and
ψ(q1, q1, t) = 0. Due to the Pauli exclusion principle, all
electrons are not permitted to occupy the lowest energy
state, and in the ultra-cold limit when all energy states up
to the Fermi energy level are occupied by electrons, there is
still a quantum-statistical pressure determined by the Fermi
pressure.

Quantum effects start playing a significant role when
the de Broglie wavelength is similar to or larger than the
average interparticle distance n−1/3, i.e. when

nλ3
B � 1, (2)

or, equivalently, the temperature is comparable or lower
than the Fermi temperature TF = EF/kB, where

EF =
�

2

2m
(3π2)2/3n2/3 (3)

is the Fermi energy for electrons, so that

χ =
TF

T
=

1
2

(3π2)2/3(nλ3
B)2/3 � 1. (4)

When the temperature approaches TF, one can show us-
ing density matrix formalism [42] that the equilibrium
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electron distribution changes from Maxwell–Boltzmann
∝ exp(−E/kBT ) to the Fermi–Dirac statistics ∝ [exp((E +
μ)/kBT )+ 1]−1. For an ultracold plasma, the Fermi screen-
ing scalelength

λF =
VF

ωp
(5)

is the quantum analogue of the Debye radius, where the
Fermi speed

VF = (2EF/m)1/2 =
�

m
(3π2n)1/3 (6)

is the speed of an electron at the Fermi surface. The quan-
tum coupling parameter

Gq =
Eint

EF
∼

⎛⎜⎜⎜⎜⎝ 1

nλ3
F

⎞⎟⎟⎟⎟⎠2/3

∼
(
�ωp

EF

)2

, (7)

is analogous to the classical one when λF → λD.
The quantum analogue to the Vlasov-Poisson system

is the Wigner-Poisson model

∂ f
∂t
+ u · ∇ f = − iem3

e

(2π)3�4

∫∫
eime(u−u′)·λ/�

×
[
φ
(
x +
λ

2
, t
)
− φ

(
x − λ

2
, t
)]

f (x, u′, t) d3λ d3v′
(8)

and

∇2φ = 4πe

(∫
f d3v − n0

)
. (9)

Note that the Wigner equation converges to the Vlasov
equation for classical particles when �→ 0

∂ f
∂t
+ u · ∇ f = − e

me
∇φ · ∂ f

∂u
. (10)

We take the moments of the Wigner equation and obtain
the quantum-electron fluid equations [2, 3]

∂n
∂t
+ ∇ · (nu) = 0, (11)

m

(
∂u
∂t
+ u · ∇u

)
= e∇φ − 1

n
∇P + FQ, (12)

where φ is determined from ∇2φ = 4πe(n− n0), and for the
degenerate Fermi-Dirac distributed plasma one has (up to
constants of order unity) the quantum statistical pressure

P =
mV2

Fn0

3

(
n
n0

)(D+2)/D

, (13)

where D is the number of degrees of freedom in the system,
and the diffraction effects

FQ =
�

2

2m
∇

(∇2 √n√
n

)
≡ −∇φB, (14)

where φB is the Bohm potential. Linearization of the NLS-
Poisson Equations yields the frequency of EPOs

ωk =

(
ω2

pe + k2V2
TF +

�
2k4

4m2
e

)1/2

, (15)

where

VTF =

√
kBTFe

me
. (16)

One can identify two distinct dispersive effects: one long
wavelength regime, VTF � �k/2me, and one short wave-
length regime, VTF � �k/2me, separated by the critical
wavenumber

kcrit =
2π
λcrit
=

π�

meVTF
∼ n−1/3. (17)

Similar results have been obtained by Bohm and Pines,
see Refs. [1,43]. Quantum diffraction effects have recently
been observed in experimental observations of electrostatic
oscillations in quantum plasmas [9]. By introducing the ef-
fective wave function

ψ(r, t) =
√

n(r, t) exp(iS (r, t)/�), (18)

where S is defined according to mu = ∇S and n = |ψ|2,
one can show that the QHD equations are equivalent to the
effective NLS-Poisson system [2, 3]

i�
∂ψ

∂t
+
�

2

2m
∇2ψ + eφψ − mV2

F

2n2
0

|ψ|4/Dψ = 0, (19)

and

∇2φ = 4πe(|ψ2| − n0). (20)

The effective NLS equation (19) captures the two main
properties of a quantum plasma, namely the quantum sta-
tistical pressure and the quantum diffraction effects, and
is coupled self-consistently to the electrostatic potential
given by the Poisson equation (20). We note that one-
dimensional version of Eq. (19) without the φ-term has also
been used to describe the behaviour of a Bose-Einstein
condensate [44]. We will give two examples in the next
sections where this formalism has been used to analyze
nonlinear effects in a quantum plasma.

3. Dark Solitons and Vortices in a
Dense Quantum Plasma
In this section, we discuss the nonlinear properties

and dynamics of dark solitons and vortices in a quan-
tum plasma [4]. Using the Schrödinger-Poisson formalism
above, one has

i
∂Ψ

∂t
+ A∇2Ψ + ϕΨ − |Ψ |4/DΨ = 0, (21)

and

∇2ϕ = |Ψ |2 − 1, (22)

where normalized variables have been used (see Ref. [4]).
The system (21) and (22) is supplemented by the Maxwell
equation

∂E
∂t
= iA (Ψ∇Ψ ∗ − Ψ ∗∇Ψ ) , (23)
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where the electric field is E = −∇ϕ. The system (21)–
(23) has the following conserved integrals: the number of
electrons

N =
∫
|Ψ | d3x, (24)

the electron momentum

P = −i
∫

Ψ ∗∇Ψ d3x, (25)

the electron angular momentum

L = −i
∫

Ψ ∗r × ∇Ψ d3x, (26)

and the total energy

E =
∫

[−Ψ ∗A∇2Ψ + |∇ϕ|2/2
+|Ψ |2+4/DD/(2 + D)] d3x. (27)

For quasi-stationary, one-dimensional structures moving
with a constant speed v0, one can find localized, solitary
wave solutions by the ansatz Ψ = W(ξ) exp(iKx − iΩt),
where W is a complex-valued function of the argument
ξ = x − v0t, and K and Ω are a constant wavenumber and
frequency shift, respectively. By the choice K = v0/2A,
the coupled system of equations can be written as

d2W
dξ2
+ λW +

ϕW
A
− |W |

4W
A
= 0, (28)

and

d2ϕ

dξ2
= |W |2 − 1, (29)

where λ = Ω/A − v2
0/4A2 is an eigenvalue of the system.

From the boundary conditions |W | = 1 and ϕ = 0 at |ξ| =
∞, we determine λ = 1/A and Ω = 1 + v2

0/4A. The system
of Eqs. (28) and (29) supports a first integral in the form

H = A
∣∣∣∣∣dW

dξ

∣∣∣∣∣2 − 1
2

(
dϕ
dξ

)2

+ |W |2 − |W |
6

3

+ϕ|W |2 − ϕ − 2
3
= 0, (30)

where the boundary conditions |W | = 1 and ϕ = 0 at |ξ| =
∞ have been employed.

Figure 1 shows profiles of |W |2 and ϕ obtained nu-
merically from (28) and (29) for a few values of A, where
W was set to −1 on the left boundary and to +1 on the
right boundary, i.e. the phase shift is 180 degrees between
the two boundaries. The solutions are in the form of dark
solitons, with a localized depletion of the electron density
Ne = |W |2, associated with a localized positive potential.
Larger values of the parameter quantum coupling parame-
ter A give rise to larger-amplitude and wider dark solitons.
The solitons localized “shoulders” on both sides of the den-
sity depletion.

Fig. 1 The electron density |W |2 (the upper panel) and electro-
static potential ϕ (the lower panel) associated with a dark
soliton supported by the system of Eqs. (28) and (30), for
A = 5 (solid lines), A = 1 (dashed lines), and A = 0.2
(dash-dotted line). After Ref. [4].

Fig. 2 The time-development of the electron density |Ψ |2 (left-
hand panel) and electrostatic potential ϕ (the right-hand
panel), obtained from a simulation of the system of
Eqs. (21) and (22). The initial condition is Ψ = 0.18 +
tanh[20 sin(x/10)] exp(iKx), with K = v0/2A, A = 5 and
v0 = 5. After Ref. [4].

Numerical solutions of the time-dependent system of
Eqs. (21) and (22) is displayed in Fig. 2, with initial con-
ditions close (but not equal) to the ones in Fig. 1. Two
very clear and long-lived dark solitons are visible, asso-
ciated with a positive potential of ϕ ≈ 3, in agreement
with the quasi-stationary solution of Fig. 1 for A = 5. In
addition there are oscillations and wave turbulence in the
time-dependent solution presented in Fig. 2. Hence, the
dark solitons seem to be robust structures that can with-
stand perturbations and turbulence during a considerable
time.

For the two-dimensional (D = 2) system, it is possi-
ble to find vortex structures of the form Ψ = ψ(r) exp(isθ−
iΩt), where r and θ are the polar coordinates defined via
x = r cos(θ) and y = r sin(θ), Ω is a constant frequency
shift, and s = 0, ±1, ±2, . . . for different excited states
(charge states). With this ansatz, Eqs. (21) and (22) can
be written in the form[
Ω + A

(
d2

dr2
+

1
r

d
dr
− s2

r2

)
+ ϕ − |ψ|2

]
ψ = 0, (31)

and (
d2

dr2
+

1
r

d
dr

)
ϕ = |ψ|2 − 1, (32)
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Fig. 3 The electron density |Ψ |2 (upper panel) and electro-
static potential ϕ (lower panel) associated with a two-
dimensional vortex supported by the system (31) and
(32), for the charge states s = 1 (solid lines), s = 2
(dashed lines) and s = 3 (dash-dotted lines). We used
A = 5 in all cases. After Ref. [4].

respectively, where the boundary conditions ψ = 1 and
ϕ = dψ/dr = 0 at r = ∞ determine the constant frequency
Ω = 1. Different signs of charge state s describe different
rotation directions of the vortex. For s � 0, one must have
ψ = 0 at r = 0, and from symmetry considerations one has
dϕ/dr = 0 at r = 0. Figure 3 shows numerical solutions
of Eqs. (31) and (32) for different s and for A = 5. Here
the vortex is characterized by a complete depletion of the
electron density at the core of the vortex, and is associated
with a positive electrostatic potential.

Figure 4 show time-dependent solutions of Eqs. (21)
and (22) in two space dimensions for singly charged (s =
±1) vortices, where, in the initial condition, four vortex-
like structures were placed at some distance from each
other. The initial conditions were such that the vortices
are organized in two vortex pairs, with s1 = +1, s2 = −1,
s3 = −1, and s4 = +1, seen in the upper panels of Fig. 4.
The vortices in the pairs have opposite polarity on the
electron fluid rotation, as seen in the in the upper right
panel of Fig. 4. Interestingly, the “partners” in the vor-
tex pairs attract each other and propagate together with a
constant velocity, and in the collision and interaction of
the vortex pairs (see the second and third pairs of pan-
els in Fig. 4), the vortices keep their identities and change
partners, resulting into two new vortex pairs which prop-
agate obliquely to the original propagation direction. On
the other hand, as shown in Fig. 5, vortices that are mul-
tiply charged (|s j| > 1) are unstable. Here the system of
Eqs. (21) and (22) was again solved numerically with the
same initial condition as the one in Fig. 4, but with dou-
bly charged vortices s1 = +2, s2 = −2, s3 = −2, and
s4 = +2. The second row of panels in Fig. 5 reveals that
the vortex pairs keep their identities for some time, while
a quasi one-dimensional density cavity is formed between
the two vortex pairs. At a later stage, the four vortices dis-
solve into complicated nonlinear structures and wave tur-

Fig. 4 The electron density |Ψ |2 (left panel) and an arrow plot of
the electron current i (Ψ∇Ψ ∗ − Ψ ∗∇Ψ ) (right panel) asso-
ciated with singly charged (|s| = 1) two-dimensional vor-
tices, obtained from a simulation of the time-dependent
system of Eqs. (21) and (22), at times t = 0, t = 3.3,
t = 6.6 and t = 9.9 (upper to lower panels). We used
A = 5. The singly charged vortices form pairs and keep
their identities. After Ref. [4].

bulence. Hence, the nonlinear dynamics is very different
between singly and multiply charged solitons, where only
singly charged vortices are long-lived and keep their iden-
tities. This is in line with previous results on the nonlinear
Schrödinger equation, where it was noted that vortices with
higher charge states are unstable [45].

4. Interaction between Intense Elec-
tromagnetic Waves and Quantum
Electron Plasma Oscillations

In this section, we discuss the nonlinear interaction
between intense electromagnetic radiation and quantum
plasma oscillations [46]. We consider a one-dimensional
geometry of an unmagnetized dense electron-ion plasma,
in which immobile ions form the neutralizing background.
Thus, these phenomena are on a timescale shorter than the
ion plasma period. An intense circularly polarized electro-
magnetic (CPEM) plane wave interacts nonlinearly with
the EPOs, giving rise to an envelope of the CPEM vector
potential A⊥ = A⊥(x̂ + iŷ) exp(−iω0t + ik0z), which obeys
the nonlinear Schrödinger equation [41]
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Fig. 5 The electron density |Ψ |2 (left panel) and an arrow plot of
the electron current i (Ψ∇Ψ ∗ − Ψ ∗∇Ψ ) (right panel) asso-
ciated with double charged (|s| = 2) two-dimensional vor-
tices, obtained from a simulation of the time-dependent
system of Eqs. (21) and (22), at times t = 0, t = 3.3,
t = 6.6 and t = 9.9 (upper to lower panels). We used
A = 5. The doubly charged vortices dissolve into nonlin-
ear structures and wave turbulence. After Ref. [4].

2iΩ0

(
∂

∂t
+ Vg

∂

∂z

)
A⊥ +

∂2A⊥
∂z2

−
( |ψ|2
γ
− 1

)
A⊥ = 0, (33)

where the electron wave function ψ and the scalar potential
are governed by, respectively,

iHe
∂ψ

∂t
+

H2
e

2
∂2ψ

∂z2
+ (φ − γ + 1)ψ = 0, (34)

and

∂2φ

∂z2
= |ψ|2 − 1, (35)

where the electron number density is defined as is given
by the |ψ|2 term. Here Ω0 represents the CPEM wave fre-
quency, Vg is the group speed of the CPEM wave, He is a
quantum coupling parameter, and γ = (1 + |A⊥|2)1/2 is the
relativistic gamma factor due to the electron quiver veloc-
ity in the CPEM wave fields. The details of normalization
of variables is given in Ref. [46]. The nonlinear coupling
between intense CPEM waves and EPOs comes about due
to the nonlinear current density, which is represented by
the term |ψ|2A⊥/γ in Eq. (33). In Eq. (34), 1 − γ is the rel-
ativistic ponderomotive potential [41], which arises due to
the cross-coupling between the CPEM wave-induced elec-
tron quiver velocity and the CPEM wave magnetic field.

A relativistically strong electromagnetic wave in a
classical electron plasma is subjected to Raman scatter-
ing and modulational instabilities [47]. One can expect that
these instabilities will be modified at quantum scale by the
dispersive effects caused by the tunnelling of the electrons.
The growth rate of the relativistic parametric instabilities
in a dense quantum plasma in the presence of a relativisti-
cally strong CPEM pump wave can be obtained in a stan-
dard manner by letting φ(z, t) = φ1(z, t), A⊥(z, t) = [A0 +

A1(z, t)] exp(−iα0t) and ψ(z, t) = [1 + ψ1(z, t)] exp(−iβ0t),
where A0 is the large-amplitude CPEM pump and A1 is
the small-amplitude fluctuations of the CPEM wave ampli-
tude due to the nonlinear coupling between CPEM waves
and EPOs, i.e. |A1| � |A0|, and ψ1 (� 1) is the small-
amplitude perturbations in the electron wave function. The
constants α0 and β0 are constant frequency shifts, deter-
mined from Eqs. (33) and (34) to be α0 = (1/γ0 −1)/(2Ω0)
and β0 = (1 − γ0)/He, where γ0 = (1 + |A0|2)1/2. The
first-order perturbations in the electromagnetic vector po-
tential and the electron wave function are expanded into
their respective sidebands as A1(z, t) = A+ exp(iKz− iΩt)+
A− exp(−iKz + iΩt) and ψ1(z, t) = ψ+ exp(iKz − iΩt) +
ψ− exp(−iKz + iΩt), while the potential is expanded as
φ(z, t) = φ̂ exp(iKz − iΩt) + φ̂∗ exp(−iKz + iΩt), where Ω
and K are the frequency and wave number of the electron
plasma oscillations, respectively. Inserting the above men-
tioned Fourier ansatz into Eqs. (33)–(35), linearizing the
resultant system of equations, and sorting into equations
for different Fourier modes, one obtains the nonlinear dis-
persion relation

1 −
(

1
D+
+

1
D−

) (
1 +

K2

DL

) |A0|2
2γ3

0

= 0, (36)

where D± = ∓2Ω0(Ω−VgK)+K2 and DL = 1+H2
e K4/4−

Ω2. We note that DL = 0 yields the linear dispersion rela-
tion Ω2 = 1 + H2

e K4/4 for the EPOs in a dense quantum
plasma [1]. For He → 0 we recover from (36) the nonlin-
ear dispersion relation for relativistically large amplitude
electromagnetic waves in a classical electron plasma [47].
The dispersion relation (36) governs the Raman backward
and forward scattering instabilities, as well as the modu-
lational instability. In the long wavelength limit Vg � 1,
Ω0 ≈ 1 one can use the ansatz Ω = iΓ, where the nor-
malized (by ωpe) growth rate Γ � 1, and obtain from
Eq. (36) the growth rate Γ = (1/2)|K|{(|A0|2/γ3

0)[1+K2/(1+
H2

e K4/4)] − K2}1/2 of the modulational instability. For
|K| < 1 and He < 1, the linear growth rate is only weakly
depending on the quantum parameter He. However, possi-
ble nonlinear saturation of the modulational instability may
lead to localized CPEM wave packets, which are trapped
in a quantum electron hole. Such localized electromag-
netic wavepackets would have length scales much shorter
than those involved in the modulational instability process,
and quantum diffraction effects associated with the quan-
tum Bohm potential may become important.
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The quantum diffraction effect on such localized elec-
tromagnetic pulses can be studied by considering a steady
state structure moving with a constant speed Vg. Inserting
the ansatz A⊥ = W(ξ) exp(−iΩt), ψ = P(ξ) exp(ikx − iωt)
and φ = φ(ξ) into Eqs. (33)–(35), where ξ = z − Vgt,
k = Vg/He and ω = V2

g/2He, and where W(ξ) and P(ξ)
are real, one obtains from (33)–(35) the coupled system of
equations

∂2W
∂ξ2
+

(
λ − P2

γ
+ 1

)
W = 0, (37)

H2
e

2
∂2P
∂ξ2
+ (φ − γ + 1)P = 0, (38)

where γ = (1 +W2)1/2, and

∂2φ

∂ξ2
= P2 − 1, (39)

with the boundary conditions W = Φ = 0 and P2 = 1
at |ξ| = ∞. In Eq. (37), λ = 2Ω0Ω represents a nonlinear
frequency shift of the CPEM wave. In the limit He → 0,
one has from (38) φ = γ−1, where P � 0, and one recovers
the classical (non-quantum) case of the relativistic solitary
waves in a cold plasma [48]. The system of Eqs. (37)–(39)
admits a Hamiltonian

QH =
1
2

(
∂W
∂ξ

)2

+
H2

e

2

(
∂P
∂ξ

)2

− 1
2

(
∂φ

∂ξ

)2

+
1
2

(λ + 1)W2 + P2 − γP2 + φP2 − φ
= 0, (40)

where the boundary conditions ∂/∂ξ = 0, W = φ = 0 and
|P| = 1 at |ξ| = ∞ have been used.

Numerical solutions of the quasi-stationary sys-
tem (37)–(39) are presented Figs. 6 and 7, while time-
dependent solutions of Eqs. (33)–(35) are shown in Figs. 8
and 9. Here parameters were used that are representa-
tive of the next generation laser-based plasma compression
(LBPC) schemes [10, 11]. The formula [41] eA⊥/mc2 =

6 × 10−10λs

√
I will determine the normalized vector po-

tential, provided that the CPEM wavelength λs (in mi-
crons) and intensity I (in W/cm2) are known. It is ex-
pected that in LBPC schemes, the electron number density
n0 may reach 1027 cm−3 and beyond, and the peak values
of eA⊥/mc2 may be in the range 1–2 (e.g. for focused EM
pulses with λs ∼ 0.15 nm and I ∼ 5 × 1027 W/cm2). For
ωpe = 1.76 × 1018 s−1, one has �ωpe = 1.76 × 10−9 erg
and He = 0.002, since mc2 = 8.1 × 10−7 erg. The elec-
tron skin depth λe ∼ 1.7 Å. On the other hand, a higher
value of He = 0.007 is achieved for ωpe = 5.64 × 1018 s−1.
Thus, our numerical solutions below, based on these two
values of He, have focused on scenarios that are relevant
for the next generation intense laser-solid density plasma
interaction experiments [10].

Figures 6 and 7 show numerical solutions of
Eqs. (37)–(39) for several values of He. The nonlinear

Fig. 6 The profiles of the CPEM vector potential W (top row),
the electron number density P2 (middle row) and the
scalar potential Φ (bottom row) for λ = −0.3 (left col-
umn), λ = −0.34 (middle column) and λ = −0.4 (right
column), with He = 0.002. After Ref. [46].

Fig. 7 The profiles of the CPEM vector potential W (top row),
the electron number density P2 (middle row) and the
scalar potential Φ (bottom row) for He = 0.007 (left col-
umn) and He = 0.002 (right column), with λ = −0.34.
After Ref. [46].

boundary value problem was solved with the boundary
conditions W = φ = 0 and P = 1 at the boundaries at
ξ = ±10. One can see that the solitary envelope pulse
is composed of a single maximum of the localized vector
potential W and a local depletion of the electron density
P2, and a localized positive potential φ at the center of the
solitary pulse. The latter has a continuous spectrum in λ,
where larger values of negative λ are associated with larger
amplitude solitary EM pulses. At the center of the solitary
EM pulse, the electron density is partially depleted, as in
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panels a) of Fig. 6, and for larger amplitudes of the EM
waves one has a stronger depletion of the electron density,
as shown in panels b) and c) of Fig. 6. For cases where
the electron density goes to almost zero in the classical
case [48], one important quantum effect is that the elec-
trons can tunnel into the depleted region. This is seen in
Fig. 7, where the electron density remains nonzero for the
larger value of He in panels a), while the density shrinks to
zero for the smaller value of He in panel b).

Figures 8 and 9 show numerical simulation results of
Eqs. (33)–(35), in order to investigate the quantum diffrac-
tion effects on the dynamics of localized CPEM wavepack-
ets. Here the long-wavelength limit ω0 ≈ 1 and Vg ≈ 0
was considered. In the initial conditions, an EM pump
with a constant amplitude A⊥ = A0 = 1 and a uniform

Fig. 8 The dynamics of the CPEM vector potential A⊥ and the
electron number density |ψ|2 (upper panels) and of the
electrostatic potential Φ (lower panel) for He = 0.002.
After Ref. [46].

Fig. 9 The dynamics of the CPEM vector potential A⊥ and the
electron number density |ψ|2 (upper panels) and the elec-
trostatic potential φ (lower panel) for He = 0.007. After
Ref. [46].

plasma density ψ = 1 was used, together with a small
amplitude noise (random numbers) of order 10−2 added
to A⊥ to give a seeding any instability. The numerical
results are displayed in Figs. 8 and 9 for He = 0.002
and He = 0.007, respectively. In both cases, one can
see an initial linear growth phase and a wave collapse at
t ≈ 70, in which almost all the CPEM wave energy is
contracted into a few well separated localized CPEM wave
pipes. These are characterized by a large bell-shaped am-
plitude of the CPEM wave, an almost complete depletion
of the electron number density at the center of the CPEM
wavepacket, and a large-amplitude positive electrostatic
potential. Comparing Fig. 8 with Fig. 9, one can see that
there is a more complex dynamics in the interaction be-
tween the CPEM wavepackets for the larger He = 0.007,
shown in Fig. 9, in comparison with He = 0.002, shown in
Fig. 8, where the wavepackets are almost stationary when
they are fully developed. Ion dynamics, which has been
neglected here, may be important for the development of
expanding plasma bubbles (cavities) on longer timescales
(e.g. the ion plasma period) [49].

5. Conclusions
In summary, we have discussed some recent develop-

ments and analytic methods to study nonlinear effects in a
quantum plasma. As examples we discussed the existence
of localized nonlinear structures in quantum electron plas-
mas. For electrostatic fluctuations, the electron dynamics
is governed by a coupled nonlinear Schrödinger and Pois-
son system of equations, which admits a set of conserved
quantities (the total number of electrons, the electron mo-
mentum, the electron angular momentum, and the elec-
tron energy). The system admits quasi-stationary, local-
ized structures in the form of one-dimensional dark soli-
tons and two-dimensional vortices. These structures are
associated with a local depletion of the electron density
associated with positive electrostatic potential, and are pa-
rameterised by a quantum coupling parameter only. In the
two-dimensional geometry, there exist a class of vortices
of different excited states (charge states) associated with
a complete depletion of the electron density and an as-
sociated positive potential. Numerical simulation of the
time-dependent system of equations demonstrated the sta-
bility of stable dark solitons in one space dimension with
an amplitude consistent with the one found from the time-
independent solutions. In two space dimensions, the dark
solitons of the first excited state were found to be stable
and the preferred nonlinear state was in the form of vortex
pairs of vortices with different polarities. One-dimensional
dark solitons and singly charge two-dimensional vortices
are thus long-lived nonlinear structures, which may trans-
port information at quantum scales in micro-mechanical
systems and dense laboratory plasmas. We have also pre-
sented theoretical and computer simulation studies of non-
linearly interacting intense CPEM waves and EPOs in very
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dense quantum plasmas, showing parametric instabilities
and the trapping of light in electron density depletions. The
localized dark solitons, vortices, and CPEM wave struc-
tures, as discussed here, may be useful for information
transfer as well as for electron acceleration in dense quan-
tum plasmas.
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